Anomaly targets in a hyperspectral image (HSI) are often multi-pixel, rather than single-pixel, objects. Therefore, algorithms using a test point vector may ignore the spatial characteristics of the test point. In addition, hyperspectral anomaly detection (AD) algorithms usually use original spectral signatures. In a fractional Fourier transform (FrFT), the signals in the fractional Fourier domain (FrFD) possess complementary characteristics of both the original reflectance spectrum and its Fourier transform. In this paper, a tensor RX (TRX) algorithm based on FrFT (FrFT-TRX) is proposed for hyperspectral AD. First, the fractional order of FrFT is selected by fractional Fourier entropy (FrFE) maximization. Then, the HSI is transformed into the FrFD by FrFT. Next, TRX is employed in the FrFD. Finally, according to the optimal spatial dimensions of the target and background tensors, the optimal AD result is achieved by adjusting the fractional order. TRX employs a test point tensor, making better use of the spatial characteristics of the test point. TRX in the FrFD exploits the complementary advantages of the intermediate domain to increase discrimination between the target and background. Six existing algorithms are used for comparison in order to verify the AD performance of the proposed FrFT-TRX over five real HSIs. The experimental results demonstrate the superiority of the proposed algorithm.
Recently, using spatial–spectral information for hyperspectral anomaly detection (AD) has received extensive attention. However, the test point and its neighborhood points are usually treated equally without highlighting the test point, which is unreasonable. In this paper, improved central attention network-based tensor RX (ICAN-TRX) is designed to extract hyperspectral anomaly targets. The ICAN-TRX algorithm consists of two parts, ICAN and TRX. In ICAN, a test tensor block as a value tensor is first reconstructed by DBN to make the anomaly points more prominent. Then, in the reconstructed tensor block, the central tensor is used as a convolution kernel to perform convolution operation with its tensor block. The result tensor as a key tensor is transformed into a weight matrix. Finally, after the correlation operation between the value tensor and the weight matrix, the new test point is obtained. In ICAN, the spectral information of a test point is emphasized, and the spatial relationships between the test point and its neighborhood points reflect their similarities. TRX is used in the new HSI after ICAN, which allows more abundant spatial information to be used for AD. Five real hyperspectral datasets are selected to estimate the performance of the proposed ICAN-TRX algorithm. The detection results demonstrate that ICAN-TRX achieves superior performance compared with seven other AD algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.