Safety is the premise of efficiency and effectiveness in the port operation. Safety investment is becoming a vital part of port operation in current era in order to overcome different types of hazards the port operation exposed to. This paper aims to improve the safety level of port operation through analyzing its influencing factors and exploring the interactions between the safety investment and system risk level. By analyzing the key factors affecting the port operation and their mutual relationship within a man–machine–environment–management system, a decision-making model of safety investment in port enterprise was established by system dynamics (SD). An illustration example and a sensitivity analysis were carried out to justify and validate the proposed model. The results show that increasing the total safety investment of port enterprises, improving the safety management investment on personnel, and strengthening the implementation effect of investment can improve the degree of port security to a certain extent. The strength of the proposed work is its practical application in current scenarios using real time data and the ability to provide a baseline approach for port enterprises to formulate safety investment strategy.
Because of the many limitations of the traditional failure mode effect and criticality analysis (FMECA), an integrated risk assessment model with improved FMECA, fuzzy Bayesian networks (FBN), and improved evidence reasoning (ER) is proposed. A new risk characterization parameter system is constructed in the model. A fuzzy rule base system based on the confidence structure is constructed by combining fuzzy set theory with expert knowledge, and BN reasoning technology is used to realize the importance ranking of the hazard degree of maritime logistics risk events. The improved ER based on weight distribution and matrix analysis can effectively integrate the results of risk event assessment and realize the hazard evaluation of the maritime logistics system from the overall perspective. The effectiveness and feasibility of the model are verified by carrying out a risk assessment on the maritime logistics of importing bauxite to China. The research results show that the priority of risk events in the maritime logistics of bauxite are “pirates or terrorist attacks” and “workers’ riots or strikes” in sequence. In addition, the bauxite maritime logistics system is at a medium- to high-risk level as a whole. The proposed model is expected to provide a systematic risk assessment model and framework for the engineering field.
With the development of the global economy and energy supply chain, the uncertainty and complexity of the bauxite maritime supply chain (BMSC) has been further increased. Determining the crucial risks and improving the supply chain’s resilient capacity based on operation objectives has become important, in order to ensure the sustainability and competitiveness of the BMSC. This paper combines quality function deployment (QFD), a multi-criteria decision method (MCDM), and intuitionistic fuzzy set (IFS); an integrated methodology is developed to achieve efficient design of BMSC resilient strategies (RESs), taking into account both customer requirements (CRs) and risk factors (RFs). A combined weighting method is employed to determine each CR’s importance. A decision-making trial and evaluation laboratory (DEMATEL) method is adopted to determine the RFs’ interrelationships. The results obtained with the MCDM are incorporated into QFD to construct a two-stage house of quality (HoQ) model, which transforms CRs into RFs, and then into RESs. The real case of the Guinea–China bauxite import supply chain is studied to demonstrate the applicability and validity of the proposed framework. Research results reveal that the most important CR is ‘stability’. ‘Information sharing asymmetry’, ‘poor ship stability or obsolete equipment performance’, and ‘lack of coordination between shipping and ports’ are the most severe risks impacting the operation of supply chain. Furthermore, ‘constructing strategic alliances’ contributes to alleviating potential risks, optimizing the allocation of resources, and finally, improving the resilience of the BMSC significantly. This paper will help managers to understand how to achieve sustainable development of the supply chain through resilient strategies, and will aid rational decision-making in the management and operation of a resilient BMSC for alleviating risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.