In complex driving scenarios, automated vehicles should behave reasonably and respond adaptively with high computational efficiency. In this paper, a computational efficient motion planning method is proposed, which considers traffic interaction and accelerates calculation. Firstly, the behavior is decided by connecting the points on the unequally divided road segments and lane centerlines, which simplifies the decision-making process in both space and time span. Secondly, as the dynamic vehicle model with changeable longitudinal velocity is considered in the trajectory generation module, the C/GMRES algorithm is used to accelerate the calculation of trajectory generation and realize on-line solving in nonlinear model predictive control. Meanwhile, the motion of other traffic participants is more accurately predicted based on the driver’s intention and kinematics vehicle model, which enables the host vehicle to obtain a more reasonable behavior and trajectory. The simulation results verify the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.