In this paper, utilizing 2D angle-resolved particle image velocimetry (PIV), the flow field of a dilute aqueous-in-oil dispersion is experimentally studied in a stirring tank. Opacity during liquid-liquid mixing is eliminated by matching the refractive indices of both phases. Anisotropy of the turbulence flow field is analysed via the turbulent kinetic energy (TKE) and energy dissipation rate (EDR) obtained at different measuring angles. The influence of spatial resolution is compared and discussed. TKE and EDR are observed to increase with increment of dispersed phase fraction while a small range of disorder and fluctuation is observed in the impeller region. The effect of dispersed droplets should be attributed to the strengthened fluctuation of velocities and spatial differences. Further work concerning higher resolution and the disperse fraction is necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.