S-doping emerged as a promising approach to further improve the catalytic performance of carbon-based materials for organic synthesis. Herein, a facile and gram-scale strategy was developed using zeolitic imidazole frameworks (ZIFs) as a precursor for the fabrication of the ZIF-derived N, S co-doped carbon-supported zinc single-atom catalyst (CNS@Zn1-AA) via the pyrolysis of S-doped ZIF-8, which was modified by aniline, ammonia and thiourea and prepared by one-pot ball milling at room temperature. This catalyst, in which Zn is dispersed as the single atom, displays superior activity in N-alkylation via the hydrogen-borrowing strategy (120 °C, turnover frequency (TOF) up to 8.4 h−1). S-doping significantly enhanced the catalytic activity of CNS@Zn1-AA, as it increased the specific surface area and defects of this material and simultaneously increased the electron density of Zn sites in this catalyst. Furthermore, this catalyst had excellent stability and recyclability, and no obvious loss in activity after eight runs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.