Because of their availability, adjustable microstructure, varieties of forms, and large specific surface area, porous carbon materials are of increasing interest for use in hydrogen storage adsorbents and electrode materials in supercapacitors and lithium-sulfur cells from the viewpoint of social sustainability and environmental friendliness. Therefore, much effort has been made to synthesize and tailor the microstructures of porous carbon materials via various activation procedures (physical and chemical activation). In particular, the chemical activation of various carbon sources using KOH as the activating reagent is very promising because of its lower activation temperature and higher yields, and well-defined micropore size distribution and ultrahigh specific surface area up to 3000 m 2 g À1 of the resulting porous carbons. In this feature article, we will cover recent research progress since 2007 on the synthesis of KOH-activated carbons for hydrogen and electrical energy storage (supercapacitors and lithium-sulfur batteries). The textural properties and surface chemistry of KOH-activated carbons depend on not only the synthesis parameters, but also different carbon sources employed including fossil/biomass-derived materials, synthetic organic polymers, and various nanostructured carbons (e.g. carbon nanotubes, carbon nanofibers, carbon aerogels, carbide-derived carbons, graphene, etc.). Following the introduction to KOH activation mechanisms and processing technologies, the characteristics and performance of KOH-activated carbons as well as their relationships are summarized and discussed through the extensive analysis of the literature based on different energy storage systems. Jiacheng WangJiacheng Wang received his PhD in materials physics and chemistry from Shanghai Institute of Ceramics, Chinese Academy of Sciences in 2007 under the supervision of Prof. Qian Liu. After three and a half years of postdoctoral research as a project researcher and then a JSPS postdoctoral fellow at the University of Tokyo, he joined the research group of
The sluggish kinetics of Oxygen Reduction Reaction (ORR) at the cathode in proton exchange membrane fuel cells or metal-air batteries requires highly effective and stable electrocatalysts to boost the reaction. The low abundance and high price of Pt-based electrocatalysts hamper the widespread application of proton exchange membrane fuel cells and metal-air batteries. As promising alternatives, metal-free carbon materials, especially upon doping heteroatoms or creating defects demonstrated excellent ORR activity, which is as efficient as or even superior to commercial platinum on carbon. Significant progress on the development of advanced carbon materials as highly stable and durable catalysts has been achieved, but the catalytic mechanisms of these materials still remain undistinguished. In present review, we summarized the up-to-date progress in the studies of carbon materials, and emphasized on the combination of experiment and theory to clarify the underlying mechanisms of these materials. At last, we proposed the perspectives on the proper strategies of elucidating the mechanisms of carbon materials as electrocatalysts towards ORR.npj Computational Materials (2019) 5:78 ; https://doi.
The replacement of platinum with non-precious-metal electrocatalysts with high efficiency and superior stability for the hydrogen-evolution reaction (HER) remains a great challenge. Herein, we report the one-step synthesis of uniform, ultrafine molybdenum carbide (Mo2C) nanoparticles (NPs) within a carbon matrix from inexpensive starting materials (dicyanamide and ammonium molybdate). The optimized catalyst consisting of Mo2C NPs with sizes lower than 3 nm encapsulated by ultrathin graphene shells (ca. 1-3 layers) showed superior HER activity in acidic media, with a very low onset potential of -6 mV, a small Tafel slope of 41 mV dec(-1), and a large exchange current density of 0.179 mA cm(-2), as well as good stability during operation for 12 h. These excellent properties are similar to those of state-of-the-art 20% Pt/C and make the catalyst one of the most active acid-stable electrocatalysts ever reported for HER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.