The combination of deep learning and sequence data has transformed protein structure prediction and modeling, evidenced in the success of AlphaFold (AF). For this reason, many methods have been developed to take advantage of this success in areas where inaccurate structural modeling may limit computational predictiveness. For example, many methods have been developed to predict protein intrinsic disorder from sequence, including our Rosetta ResidueDisorder (RRD) approach. Intrinsically disordered regions in proteins are parts of the sequence that do not form ordered, folded structures under typical physiological conditions. In the original implementation of RRD, Rosetta ab initio models were generated, and disordered regions were predicted based on residue scores (disordered residues typically exist in regions of unfavorable scores). In this work, we show that by (i) replacing the ab initio modeling with AF (using the same scoring and disorder assignment approach) and (ii) updating the score function, the predictiveness improved significantly. Residues were better ranked by the order/disorder, evidenced by an improvement in receiver operating characteristic area-under-the-curve from 0.69 to 0.78 on a large (229 protein) and balanced data set (relatively even ordered versus disordered residues). Finally, the binary prediction accuracy also improved from 62% to 74% on the same data set. Our results show that the combined AF-RRD approach was as good as or better than all existing methods by these metrics (AF-RRD had the highest prediction accuracy).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.