Understanding the chemical kinetics of arsenic during electrocoagulation (EC) treatment is essential for a deeper understanding of arsenic removal using EC under a variety of operating conditions and solution compositions. We describe a highly constrained, simple chemical dynamic model of As(III) oxidation and As(III,V), Si, and P sorption for the EC system using model parameters extracted from some of our experimental results and previous studies. Our model predictions agree well with both data extracted from previous studies and our observed experimental data over a broad range of operating conditions (charge dosage rate) and solution chemistry (pH, co-occurring ions) without free model parameters. Our model provides insights into why higher pH and lower charge dosage rate (Coulombs/L/min) facilitate As(III) removal by EC and sheds light on the debate in the recent published literature regarding the mechanism of As(III) oxidation during EC. Our model also provides practically useful estimates of the minimum amount of iron required to remove 500 μg/L As(III) to <50 μg/L. Parameters measured in this work include the ratio of rate constants for Fe(II) and As(III) reactions with Fe(IV) in synthetic groundwater (k(1)/k(2) = 1.07) and the apparent rate constant of Fe(II) oxidation with dissolved oxygen at pH 7 (k(app) = 10(0.22) M(-1)s(-1)).
A novel one-dimensional (1D) analytical model is proposed for quantifying the breakdown voltage of a reduced surface field (RESURF) lateral power device fabricated on silicon on an insulator (SOI) substrate. We assume that the charges in the depletion region contribute to the lateral PN junctions along the diagonal of the area shared by the lateral and vertical depletion regions. Based on the assumption, the lateral PN junction behaves as a linearly graded junction, thus resulting in a reduced surface electric field and high breakdown voltage. Using the proposed model, the breakdown voltage as a function of device parameters is investigated and compared with the numerical simulation by the TCAD tools. The analytical results are shown to be in fair agreement with the numerical results. Finally, a new RESURF criterion is derived which offers a useful scheme to optimize the structure parameters. This simple 1D model provides a clear physical insight into the RESURF effect and a new explanation on the improvement in breakdown voltage in an SOI RESURF device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.