We experimentally and numerically demonstrate the time delay (TD) signature suppression of chaotic output in a double optical feedback semiconductor laser (DOF-SL) system. Two types of TD signature suppression are demonstrated by adjusting the lengths and the feedback power ratios of the two external cavities. One can significantly eliminate all TD signatures of the DOF-SL system and the corresponding power spectrum distribution becomes quite smooth and flat, the other suppresses one of two TD signatures and remains another one.
Using two mutually coupled semiconductor lasers (MC-SLs) outputs as chaotic entropy sources, a scheme for generating Tbits/s ultra-fast physical random bit (PRB) is demonstrated and analyzed experimentally. Firstly, two entropy sources originating from two chaotic outputs of MC-SLs are obtained in parallel. Secondly, by adopting multiple optimized post-processing methods, two PRB streams with the generation rate of 0.56 Tbits/s are extracted from the two entropy sources and their randomness are verified by using NIST Special Publication 800-22 statistical tests. Through merging the two sets of 0.56 Tbits/s PRB streams by an interleaving operation, a third set of 1.12 Tbits/s PRB stream, which meets all the quality criteria of NIST statistical tests, can be further acquired. Finally, after additionally taking into account the restriction of the min-entropy, the generation rate of two sets of PRB stream from the two entropy sources can still attain 0.48 Tbits/s, and then a third set of merging PRB stream is 0.96 Tbits/s. Moreover, for the sequence length of the order of 10 Gbits, the statistical bias and serial correlation coefficient of three sets of PRB streams are also analyzed.
This work demonstrates that mid-infrared quantum cascade lasers operating under external optical feedback can output a chaotic dynamics through low-frequency fluctuations close to 77 K. Results also show that the birth of chaotic dynamics is not limited to near-threshold pumping levels. In addition, when the semiconductor material is cooled down from room temperature to 77 K, it is found that the laser destabilization takes place at a lower feedback ratio which proves that quantum cascade lasers are sensitive to temperatures, likely due to changes in the upper state lifetime. These examinations are meaningful for chaotic operation of quantum cascade lasers in secure atmospheric transmission lines and optical countermeasure systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.