In remote sensing field, there are many applications of object detection in recent years, which demands a great number of labeled data. However, we may be faced with some cases where only limited data are available. In this paper, we proposed a fewshot object detector which is designed for detecting novel objects provided with only a few examples. Particularly, in order to fit the object detection settings, our proposed few-shot detector concentrates on the relations that lie in the level of objects instead of the full image with the assistance of Self-Adaptive Attention Network (SAAN). The SAAN can fully leverage the object-level relations through a relation GRU unit and simultaneously attach attention on object features in a self-adaptive way according to the object-level relations to avoid some situations where the additional attention is useless or even detrimental. Eventually, the detection results are produced from the features that are added with attention and thus are able to be detected simply. The experiments demonstrate the effectiveness of the proposed method in few-shot scenes.
Although deep learning has received extensive attention and achieved excellent performance in various scenarios, it suffers from adversarial examples to some extent. In particular, physical attack poses a greater threat than digital attack. However, existing research has paid less attention to the physical attack of object detection in UAV remote sensing images (RSIs). In this work, we carefully analyze the universal adversarial patch attack for multi-scale objects in the field of remote sensing. There are two challenges faced by an adversarial attack in RSIs. On one hand, the number of objects in remote sensing images is more than that of natural images. Therefore, it is difficult for an adversarial patch to show an adversarial effect on all objects when attacking a detector of RSIs. On the other hand, the wide height range of the photography platform causes the size of objects to vary a great deal, which presents challenges for the generation of universal adversarial perturbation for multi-scale objects. To this end, we propose an adversarial attack method of object detection for remote sensing data. One of the key ideas of the proposed method is the novel optimization of the adversarial patch. We aim to attack as many objects as possible by formulating a joint optimization problem. Furthermore, we raise the scale factor to generate a universal adversarial patch that adapts to multi-scale objects, which ensures that the adversarial patch is valid for multi-scale objects in the real world. Extensive experiments demonstrate the superiority of our method against state-of-the-art methods on YOLO-v3 and YOLO-v5. In addition, we also validate the effectiveness of our method in real-world applications.
Marine permanent magnet synchronous propulsion motors have problems, such as low reliability and difficult maintenance in the traditional control. In this paper, a sensorless control system for a permanent magnet synchronous motor (PMSM) based on parameter identification is proposed. According to the mathematical model of the motor in the two-phase synchronous rotating coordinate system, a model reference adaptation system (MRAS) is used to estimate the rotor speed and rotor position of the motor. Because the MRAS is highly dependent on the motor parameters, and they will change with the environment, working state, etc., the Adaline neural network is used to identify the motor parameters online, and then the model parameters in the MRAS are corrected. The simulation results show that the combined control system can reduce the estimated error of the rotor speed by about 50% compared with the traditional method, and reduces the rotor position angle estimation error by 96%. It shows that the combined system can accurately estimate the rotational speed and rotor position of the motor, and it has high identification accuracy for the motor parameters.
Infrared dim small target detection is one of the important contents in the research of military applications such as remote sensing intelligence reconnaissance, long-range precision strike, aerospace offense-defense confrontation, etc. In this paper, we focus on the detection of low-flying fixed-wing unmanned aerial vehicle (UAV) target based on infrared imaging. To this end, we propose a simple and effective detection model, which can be viewed as a combination of low-rank approximation and multiple sparse constraints. We first model the infrared image that to be detected as a sum of three patch matrices called background, target and noise. Then, we put a nonconvex lowrank approximation on the background patch matrix to suppress the background edges, and put a reweighted l1,1 norm constraint on the target matrix to better preserve the dim small target. Moreover, in order to eliminate the strong residual edges left in the target image under complex background, both l1,1 matrix norm and l2,1 matrix norm are used to constrain the noise patch. Finally, we develop an alternating optimization algorithm to solve the associated minimization problem. Extensive experiments carried out on a recently released real low-flying UAV database show that the proposed approach works well in detecting infrared dim small target measured by qualitative analysis and quantitative analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.