High-energy charged particle radiography has been used for diagnostics of high-energy density matter, and electrons can serve as a promising radiographic probe that acts as a complement to commonly used proton probes. Here we report on an electron radiography experiment using 45 MeV electrons from an S-band photoinjector, where scattered electrons, after interacting with a sample, are collected and imaged by a quadrupole imaging system. We achieve a spatial resolution of a few microns (∼4 μm) and a thickness resolution of a few percent for a silicon target of 300-600 μm in thickness. With additional dark-field images captured by selecting electrons with large scattering angles, we show that complementary information for determining external details such as outlines, boundaries and defects can be obtained.
Ultrafast imaging tools are of great importance for determining the dynamic density distribution in high energy density (HED) matter. In this work, we designed a high energy electron radiography (HEER) system based on a linear electron accelerator to evaluate its capability for imaging HED matter. 40 MeV electron beams were used to image an aluminum target to study the density resolution and spatial resolution of HEER. The results demonstrate a spatial resolution of tens of micrometers. The interaction of the beams with the target and the beam transport of the transmitted electrons are further simulated with EGS5 and PARMELA codes, with the results showing good agreement with the experimental resolution. Furthermore, the experiment can be improved by adding an aperture at the Fourier plane.
Here a compact three orthogonal planes high-energy electron radiography system was proposed. One of the critical technologies, the ultra-fast beam bunches split from the bunch train are studied. The separated bunches could be transported to the three orthogonal planes of the target for dynamic radiography diagnostics. The key elements of the ultra-fast bunches split system are transverse deflecting cavity (TDC) and the twin septum magnet (TSM). The principle of TDC and TSM are briefly introduced. An example of the beam bunches split system for test experiment (40 MeV electron beam) with TDC and TSM is designed and studied by particle-tracking simulation and it confirms this method is valid and feasible. Especially with TSM, a compact three orthogonal planes radiography system can be realized. The evolution of the beam parameters along the beam line from simulation are investigated. The detailed design of the beam split system and beam dynamics simulation study are presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.