Fuel elements in a high-temperature gas-cooled reactor (HTGR) core may be stacked with a hexagonal close-packed (HCP) structure; therefore, analyzing the temperature distribution and heat transfer efficiency in the HCP pebble bed is of great significance to the design and safety of HTGR cores. In this study, the heat transfer characteristics of an HCP pebble bed are studied using CFD. The thermal fields and convective heat transfer coefficients under different coolant inlet velocities are obtained, and the velocity fields in the gap areas are also analyzed in different planes. It is found that the strongest heat transfer is shown near the right vertices of the top and bottom spheres, while the weakest heat transfer takes place in areas near the contact points where no fluid flows over; in addition, the correlation of the overall heat transfer coefficient with the Reynolds number is proposed as havg = 0.1545(k/L)Re0.8 (Pr = 0.712, 1.6 × 104 ≤ Re ≤ 4 × 104). It is also found that the heat transfer intensity of the HCP structure is weaker than that of the face-centered-cubic structure. These findings provide a reference for reactor designers and will contribute to the development of safer pebble-bed cores.
Enhancing heat transfer in the pebble bed reactor could reduce the surface temperatures and lower the possibility of forming hot-spots. The effectiveness of inserting a smaller sphere into a structured pebble bed on optimizing the heat transfer has been confirmed, and yet, the mechanism of heat transfer enhancement is still not fully understood. The impact of the quantity and size of the small spheres on the heat transfer characteristics has been investigated in this study and the mechanism of enhancement was analyzed. It was found that: (1) When the volume or the surface area of the inserted sphere was kept the same, the overall heat transfer coefficients (HTC) of the pebble bed in case 2 or case 3 respectively demonstrated 1.4% or 2.8% higher than that of the bed in case 1; (2) the overall HTC showed an increasing trend with the decreasing ratio of the surface area to the volume; (3) the varying trends of local HTCs along the designated direction were similar among 3 cases and the strongest heat transfer positions were found near pebble-sphere contact points. Such findings will help to design a better pebble bed core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.