Nanofluidics is promising in the construction of highly-efficient osmotic energy generator, but it is still a challenge to develop large-scale and highperformance nanofluidic membranes. The emerging covalent organic frameworks (COFs) provide a desirable platform to create nanofluidic membranes with high ion selectivity and permeability towards effective osmotic energy conversion. Herein, an ultrathin self-standing COF nanofluidic membranes based on terephthalaldehyde-tetrakis(4-aminophenyl)methane is developed to construct high-efficiency nanofluidic osmotic energy generator. Benefiting from the nano-confined channels (1.4 nm) and negative surface charges, the COF based nanofluidic membrane demonstrates both excellent cation selectivity and high ion conductance. Moreover, an ultrathin thickness of ≈1.5 µm significantly reduces the membrane resistance. Consequently, the nanofluidic osmotic energy generator based on COF membrane can deliver a high output power of 5.31 W m −2 under a 50-fold salinity gradient simulating natural river/ sea junction, which is superior to most reported systems and reaches the industrial level. More importantly, such a COF nanofluidic membrane exhibits excellent stability in response to various environmental factors, including wide saline solution concentration, temperature and pH ranges. This work is anticipated to highlight the great potential of 1D COF nanofluidic membranes toward highly-efficient osmotic energy generators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.