Understanding the origin and sensitivity of carbon dot emission will improve their utility in various applications.
It is imperative to identify the network of residues essential to the allosteric coupling for the purpose of rationally engineering allostery in proteins. Deep mutational scanning analysis has emerged as a function-centric approach for identifying such allostery hotspots in a comprehensive and unbiased fashion, leading to observations that challenge our understanding of allostery at the molecular level. Specifically, a recent deep mutational scanning study of the tetracycline repressor (TetR) revealed an unexpectedly broad distribution of allostery hotspots throughout the protein structure. Using extensive molecular dynamics simulations (up to 50 μs) and free energy computations, we establish the molecular and energetic basis for the strong anticooperativity between the ligand and DNA binding sites. The computed free energy landscapes in different ligation states illustrate that allostery in TetR is well described by a conformational selection model, in which the apo state samples a broad set of conformations, and specific ones are selectively stabilized by either ligand or DNA binding. By examining a range of structural and dynamic properties of residues at both local and global scales, we observe that various analyses capture different subsets of experimentally identified hotspots, suggesting that these residues modulate allostery in distinct ways. These results motivate the development of a thermodynamic model that qualitatively explains the broad distribution of hotspot residues and their distinct features in molecular dynamics simulations. The multifaceted strategy that we establish here for hotspot evaluations and our insights into their mechanistic contributions are useful for modulating protein allostery in mechanistic and engineering studies.
Although buried titratable residues in protein cavities are often of major functional importance, it is generally challenging to understand their properties such as the ionization state and factors of stabilization based on experimental studies alone. A specific set of examples involve buried Glu–Lys pairs in a series of variants of Staphylococcal nuclease, for which recent structural and thermodynamic studies appeared to suggest that both the stability and the ionization state of the buried Glu–Lys pair are sensitive to its orientation (i.e., Glu23–Lys36 vs Lys23–Glu36). To further clarify the situation, especially ionization states of the buried Glu–Lys pairs, we have conducted extensive molecular dynamics simulations and free energy computations. Microsecond molecular dynamics simulations show that the hydration level of the cavity depends on the orientation of the buried ion-pair therein as well as its ionization state; free energy simulations recapitulate the relative stability of Glu23–Lys36 (EK) vs Lys23–Glu36 (KE) mutants measured experimentally, although the difference is similar in magnitude regardless of the ionization state of the Glu–Lys pair. A complementary set of free energy simulations strongly suggests that, in contrast to the original suggestion in the experimental analysis, the Glu and Lys residues prefer to adopt their charge-neutral rather than the ionized states. This result is consistent with the low dielectric constant computed for water in the cavity, which makes it difficult for the protein cavity to stabilize a pair of charged Glu–Lys residues, even with water penetration. The current study highlights the role of free energy simulations in understanding the ionization state of buried titratable residues and the relevant energetic contributions, forming the basis for the rational design of buried charge networks in proteins.
Buried charged residues play important roles in the modulation of protein stabilities and conformational dynamics and make crucial contributions to protein functions. Considering the generally nonpolar nature of protein interior, a key question concerns the contribution of electronic polarization to the stabilization and properties of buried charges. We answer this question by conducting free energy simulations using the latest polarizable CHARMM force field based on Drude oscillators for a series of Staphylococcal nuclease mutants that involve a buried Glu-Lys pair in different titration states and orientations. While a nonpolarizable model suggests that the ionized form of the buried Glu-Lys pair is more than 40 kcal/mol less stable than the charge-neutral form, the two titration states are comparable in stability when electronic polarization is included explicitly, a result better reconcilable with available experimental data. Analysis of free energy components suggests that additional stabilization of the ionized Glu-Lys pair has contributions from both the enhanced salt-bridge strength and stronger interaction between the ion-pair and surrounding protein residues and penetrated water. Despite the stronger direct interaction between Glu and Lys, the ion-pair exhibits considerably larger and faster structural fluctuations when polarization is included, due to compensation of interactions in the cavity. Collectively, observations from this work provide compelling evidence that electronic polarization is essential to the stability, hydration, dynamics, and therefore function of buried charges in proteins. Therefore, our study advocates for the explicit consideration of electronic polarization for mechanistic and engineering studies that implicate buried charged residues, such as enzymes and ion transporters.
Temperature-dependent regulation of ion channel activity is critical for a variety of physiological processes ranging from immune response to perception of noxious stimuli. Our understanding of the structural mechanisms that underlie temperature sensing remains limited, in part due to the difficulty of combining high-resolution structural analysis with temperature stimulus. Here, we use NMR to compare the temperature-dependent behavior of Shaker potassium channel voltage sensor domain (WT-VSD) to its engineered temperature sensitive (TS-VSD) variant. Further insight into the molecular basis for temperature-dependent behavior is obtained by analyzing the experimental results together with molecular dynamics simulations. Our studies reveal that the overall secondary structure of the engineered TS-VSD is identical to the wild-type channels except for local changes in backbone torsion angles near the site of substitution (V369S and F370S). Remarkably however, these structural differences result in increased hydration of the voltage-sensing arginines and the S4–S5 linker helix in the TS-VSD at higher temperatures, in contrast to the WT-VSD. These findings highlight how subtle differences in the primary structure can result in large-scale changes in solvation and thereby confer increased temperature-dependent activity beyond that predicted by linear summation of solvation energies of individual substituents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.