Large optical anisotropy observed in a broad spectral range is of paramount importance for efficient light manipulation in countless devices. Although a giant anisotropy has been recently observed in the mid-infrared wavelength range, for visible and near-infrared spectral intervals, the problem remains acute with the highest reported birefringence values of 0.8 in BaTiS3 and h-BN crystals. This issue inspired an intensive search for giant optical anisotropy among natural and artificial materials. Here, we demonstrate that layered transition metal dichalcogenides (TMDCs) provide an answer to this quest owing to their fundamental differences between intralayer strong covalent bonding and weak interlayer van der Waals interaction. To do this, we made correlative far- and near-field characterizations validated by first-principle calculations that reveal a huge birefringence of 1.5 in the infrared and 3 in the visible light for MoS2. Our findings demonstrate that this remarkable anisotropy allows for tackling the diffraction limit enabling an avenue for on-chip next-generation photonics.
intercalando átomos de sodio en los llamados materiales de van der Waals. El avance se podría aplicar en tecnologías de la información y sensores biológicos de alta sensibilidad. SINC 4/5/2020 10:47 CEST
The biaxial van der Waals semiconductor α‐phase molybdenum trioxide (α‐MoO3) has recently received significant attention due to its ability to support highly anisotropic phonon polaritons (PhPs)—infrared (IR) light coupled to lattice vibrations—offering an unprecedented platform for controlling the flow of energy at the nanoscale. However, to fully exploit the extraordinary IR response of this material, an accurate dielectric function is required. Here, the accurate IR dielectric function of α‐MoO3 is reported by modeling far‐field polarized IR reflectance spectra acquired on a single thick flake of this material. Unique to this work, the far‐field model is refined by contrasting the experimental dispersion and damping of PhPs, revealed by polariton interferometry using scattering‐type scanning near‐field optical microscopy (s‐SNOM) on thin flakes of α‐MoO3, with analytical and transfer‐matrix calculations, as well as full‐wave simulations. Through these correlative efforts, exceptional quantitative agreement is attained to both far‐ and near‐field properties for multiple flakes, thus providing strong verification of the accuracy of this model, while offering a novel approach to extracting dielectric functions of nanomaterials. In addition, by employing density functional theory (DFT), insights into the various vibrational states dictating the dielectric function model and the intriguing optical properties of α‐MoO3 are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.