Synthesis planning is the process of recursively decomposing target molecules into available precursors. Computer-aided retrosynthesis can potentially assist chemists in designing synthetic routes; however, at present, it is cumbersome and cannot provide satisfactory results. In this study, we have developed a template-free self-corrected retrosynthesis predictor (SCROP) to predict retrosynthesis using transformer neural networks. In the method, the retrosynthesis planning was converted to a machine translation problem from the products to molecular linear notations of the reactants. By coupling with a neural network-based syntax corrector, our method achieved an accuracy of 59.0% on a standard benchmark data set, which outperformed other deep learning methods by >21% and template-based methods by >6%. More importantly, our method was 1.7 times more accurate than other state-of-the-art methods for compounds not appearing in the training set.
Illuminating interactions between proteins and small drug molecules is a long-standing challenge in the field of drug discovery. Despite the importance of understanding these interactions, most previous works are limited by hand-designed scoring functions and insufficient conformation sampling. The recently-proposed graph neural network-based methods provides alternatives to predict protein-ligand complex conformation in a one-shot manner. However, these methods neglect the geometric constraints of the complex structure and weaken the role of local functional regions. As a result, they might produce unreasonable conformations for challenging targets and generalize poorly to novel proteins. In this paper, we propose Trigonometry-Aware Neural networKs for binding structure prediction, TANKBind, that builds trigonometry constraint as a vigorous inductive bias into the model and explicitly attends to all possible binding sites for each protein by segmenting the whole protein into functional blocks. We construct novel contrastive losses with local region negative sampling to jointly optimize the binding interaction and affinity. Extensive experiments show substantial performance gains in comparison to state-of-the-art physics-based and deep learning-based methods on commonly-used benchmark datasets for both binding structure and affinity predictions with variant settings. We release our code at https://github.com/luwei0917/TankBind.
Biomedical knowledge graphs (KGs), which can help with the understanding of complex biological systems and pathologies, have begun to play a critical role in medical practice and research. However, challenges remain in their embedding and use due to their complex nature and the specific demands of their construction. Existing studies often suffer from problems such as sparse and noisy datasets, insufficient modeling methods and non-uniform evaluation metrics. In this work, we established a comprehensive KG system for the biomedical field in an attempt to bridge the gap. Here, we introduced PharmKG, a multi-relational, attributed biomedical KG, composed of more than 500 000 individual interconnections between genes, drugs and diseases, with 29 relation types over a vocabulary of ~8000 disambiguated entities. Each entity in PharmKG is attached with heterogeneous, domain-specific information obtained from multi-omics data, i.e. gene expression, chemical structure and disease word embedding, while preserving the semantic and biomedical features. For baselines, we offered nine state-of-the-art KG embedding (KGE) approaches and a new biological, intuitive, graph neural network-based KGE method that uses a combination of both global network structure and heterogeneous domain features. Based on the proposed benchmark, we conducted extensive experiments to assess these KGE models using multiple evaluation metrics. Finally, we discussed our observations across various downstream biological tasks and provide insights and guidelines for how to use a KG in biomedicine. We hope that the unprecedented quality and diversity of PharmKG will lead to advances in biomedical KG construction, embedding and application.
Protein–DNA interactions play crucial roles in the biological systems, and identifying protein–DNA binding sites is the first step for mechanistic understanding of various biological activities (such as transcription and repair) and designing novel drugs. How to accurately identify DNA-binding residues from only protein sequence remains a challenging task. Currently, most existing sequence-based methods only consider contextual features of the sequential neighbors, which are limited to capture spatial information. Based on the recent breakthrough in protein structure prediction by AlphaFold2, we propose an accurate predictor, GraphSite, for identifying DNA-binding residues based on the structural models predicted by AlphaFold2. Here, we convert the binding site prediction problem into a graph node classification task and employ a transformer-based variant model to take the protein structural information into account. By leveraging predicted protein structures and graph transformer, GraphSite substantially improves over the latest sequence-based and structure-based methods. The algorithm is further confirmed on the independent test set of 181 proteins, where GraphSite surpasses the state-of-the-art structure-based method by 16.4% in area under the precision-recall curve and 11.2% in Matthews correlation coefficient, respectively. We provide the datasets, the predicted structures and the source codes along with the pre-trained models of GraphSite at https://github.com/biomed-AI/GraphSite. The GraphSite web server is freely available at https://biomed.nscc-gz.cn/apps/GraphSite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.