The type-II mixed-model assembly line balancing problem with uncertain task times is a critical problem. This paper addresses this issue of practical significance to production efficiency. Herein, a robust optimization model for this problem is formulated to hedge against uncertainty. Moreover, the counterpart of the robust optimization model is developed by duality. A hybrid genetic algorithm (HGA) is proposed to solve this problem. In this algorithm, a heuristic method is utilized to seed the initial population. In addition, an adaptive local search procedure and a discrete Levy flight are hybridized with the genetic algorithm (GA) to enhance the performance of the algorithm. The effectiveness of the HGA is tested on a set of benchmark instances. Furthermore, the effect of uncertainty parameters on production efficiency is also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.