A simple sample preparation method requiring minimal organic solvents is proposed for the determination of the total phthalate content in cosmetics by high-performance liquid chromatography-tandem mass spectrometry. The hydrolysis of phthalates and purification of interfering substances were performed in a three-phase system that included an upper n-hexane phase, a middle ethanol phase, and a lower aqueous alkali solution. This three-phase system utilized an incremental purification strategy. The apolar ingredients were extracted with n-hexane, the polar pigments accumulated in the ethanol phase, and the hydrolysis product, phthalic acid, remained in the hydrolysate. Under the optimized conditions, the correlation coefficients (r) for the calibration curves were 0.998-0.999 in the range 0.60-12 mol L. The limit of detection was 5.1 μmol kg, and the limit of quantification was 9.2 μmol kg. The recoveries varied from 84 to 97% with RSDs equal to or lower than 11%. The intra-day and inter-day repeatability values, expressed as the relative standard deviation, were less than 8.7 and 9.8, respectively. No obvious matrix effect existed in the different cosmetics matrices. The validated method was applied for the analysis of 57 commercial cosmetic samples. Graphical abstract Analysis of phthalates in cosmetics using a three-phase preparation method.
A selective and low organic‐solvent‐consuming method of sample preparation combined with high‐performance liquid chromatography and tandem mass spectrometry is introduced for phthalate sum analysis in farmland soil. Sample treatment involves a one‐step hydrolysis of phthalates using methanol and alkaline and tetrabutylammonium bromide for 20 min at 80℃. Then, the resulting phthalic acid in the acidified hydrolysate is extracted using an octanol‐based supramolecular solvent without purification. Under optimized conditions, the correlation coefficients were 0.992–0.999 and standard errors (Sy/x) were 0.018–0.138 for calibration curves within the range of 50–2000 ng/mL. No obvious matrix effect occurred between the pure supramolecular solvent and soil extract. The recovery rates ranged from 91 to 107% with the relative standard deviation ranging from 0.5–7.3%. Intra‐ and interday repeatability, expressed as relative standard deviation, was less than 8.0 and 11.0%, respectively. The detected limit was 2.49 nmol/g, and the quantification limit was 3.64 nmol/g. Fifteen soil samples were analysed, and the background corrected phthalate sum ranged from 1.44 to 120 nmol/g.
A novel method for rapid screening of phthalates (PAEs) in perfumes was developed. The PAEs were hydrolyzed to phthalic acid (PA), and the PA in the acidified solution was extracted with tributyl phosphate (TBP) which was detected by high performance liquid chromatography-diode array detection (HPLC-DAD). Meanwhile exposure dose to PAEs was estimated by the percentage of a topically applied dose that permeates the skin. The parameters such as the concentration and volume of KOH, the volume of ethanol, hydrolysis time and temperature were employed to evaluate the hydrolysis efficiency of PAEs. The optimized hydrolysis conditions were 10 mL of 4 mol/L KOH, and 1 mL of ethanol at 80℃ for 20 min. The linear range of phthalic acid was 3-240 μmol/L with a good correlation coefficient (=0.9991). The limits of detection (LOD) and quantification (LOQ) were 4.6 μmol/kg and 5.9 μmol/kg, respectively. The recoveries varied from 83.4% to 92.7% with relative standard deviations equal to or lower than 6.8%(=5). A total of 35 perfume samples were determined, and the contents of total PAEs were found in the range of < LOD-77.738 mmol/kg, and the max exposure dose to PAEs for female adults was 0.4742 μg/(kg·d) through use of perfumes. The method is simple and reliable, and has a wide range of applicability. It can be used as a new choice for the detection of PAEs in perfume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.