Quantitatively and accurately monitoring the damage to composites is critical for estimating the remaining life of structures and determining whether maintenance is essential. This paper proposed an active sensing method for damage localization and quantification in composite plates. The probabilistic imaging algorithm and the statistical method were introduced to reduce the impact of composite anisotropy on the accuracy of damage detection. The matching pursuit decomposition (MPD) algorithm was utilized to extract the precise TOF for damage detection. The damage localization was realized by comprehensively evaluating the damage probability evaluation results of all sensing paths in the monitoring area. Meanwhile, the scattering source was recognized on the elliptical trajectory obtained through the TOF of each sensing path to estimate the damage size. Damage size was characterized by the Gaussian kernel probability density distribution of scattering sources. The algorithm was validated by through-thickness hole damages of various locations and sizes in composite plates. The experimental results demonstrated that the localization and quantification absolute error are within 11 mm and 2.2 mm, respectively, with a sensor spacing of 100 mm. The algorithm proposed in this paper can accurately locate and quantify damage in composite plate-like structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.