Objective. Electroencephalography (EEG) motor imagery classification has been widely used in healthcare applications such as mobile assistive robots and post-stroke rehabilitation. Recently, EEG motor imagery classification methods based on convolutional neural networks (CNNs) have been proposed and have achieved relatively high classification accuracy. However, these methods use single convolution scale in the CNN, while the best convolution scale differs from subject to subject. This limits the classification accuracy. Another issue is that the classification accuracy degrades when training data is limited. Approach. To address these issues, we have proposed a hybrid-scale CNN architecture with a data augmentation method for EEG motor imagery classification. Main results. Compared with several state-of-the-art methods, the proposed method achieves an average classification accuracy of 91.57% and 87.6% on two commonly used datasets, which outperforms several state-of-the-art EEG motor imagery classification methods. Significance. The proposed method effectively addresses the issues of existing CNN-based EEG motor imagery classification methods and improves the classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.