In this work, we study the high critical breakdown field in β-Ga2O3 perpendicular to its (100) crystal plane using a β-Ga2O3/graphene vertical heterostructure. Measurements indicate a record breakdown field of 5.2 MV/cm perpendicular to the (100) plane that is significantly larger than the previously reported values on lateral β-Ga2O3 field-effect-transistors (FETs). This result is compared with the critical field typically measured within the (100) crystal plane, and the observed anisotropy is explained through a combined theoretical and experimental analysis.
The development of high-performance rechargeable batteries highly depends on the rational structure/phase design of advanced electrode materials. A unique 2D lamellar stacked nanosheet VS2/MoS2 heterostructure is synthesized using a simple...
This work presents the temperature-dependent forward conduction and reverse blocking characteristics of a high-voltage vertical Ga2O3 power rectifier from 300 K to 600 K. Vertical β-Ga2O3 Schottky barrier diodes (SBDs) were fabricated with a bevel-field-plated edge termination, where a beveled sidewall was implemented in both the mesa and the field plate oxide. The Schottky barrier height was found to increase from 1.2 eV to 1.3 eV as the temperature increases from 300 K to 600 K, indicating the existence of barrier height inhomogeneity. The net donor concentration in the drift region shows little dependence on the temperature. The reverse leakage current up to 500 V was found to be limited by both the thermionic-field electron injection at the Schottky contact and the electron hopping via the defect states in the depletion region. At 300–500 K, the leakage is first limited by the electron injection at low voltages and then by the hopping in depleted Ga2O3 at high voltages. At temperatures above 500 K, the thermionic field emission limits the device leakage over the entire voltage range up to 500 V. Compared to the state-of-the-art SiC and GaN SBDs when blocking a similar voltage, our vertical Ga2O3 SBDs are capable of operating at significantly higher temperatures and show a smaller leakage current increase with temperature. This shows the great potential of Ga2O3 SBDs for high-temperature and high-voltage power applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.