In this work, molecular structures, combined with machine learning algorithms, were applied to predict the critical temperatures (Tc) of a group of organic refrigerants. Aiming at solving the problem that previous models cannot distinguish isomers, a topological index was introduced. The results indicate that the novel molecular descriptor ‘molecular fingerprint + topological index’ can effectively differentiate isomers. The average absolute average deviation between the predicted and experimental values is 3.99%, which proves a reasonable prediction ability of the present method. In addition, the performance of the proposed model was compared with that of other previously reported methods. The results show that the present model is superior to other approaches with respect to accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.