An unprecedented palladium-catalyzed cyanation of aromatic C-H bonds by using tertiary amine derived isocyanide as a novel cyano source was developed. Cu(TFA)(2) was used as a requisite stoichiometric oxidant. Mechanistic studies suggest that a tertiary carbon cation-based intermediate is involved following the C-N bond breakage.
All-polymer solar cells (all-PSCs) are proven to possess outstanding thermal and mechanical stabilities. However, concurrently achieving appropriate phase-separated pattern, efficient charge transportation, and adequate charge transfer between donor and acceptor components is still a challenge, and thus, only a few polymer−polymer bulk heterojunction (BHJ) blends have yielded BHJ device power conversion efficiency (PCE) values of >8%. Generally, polymer backbone substitutions may have a direct influence on the device performance. Thus, this report examines a set of wide bandgap polymer donor analogues composed of thienothiophene (TT) or thiazolothiazole (TTz) motif, and their all-PSC device performance with N2200. Results show that all-PSCs based on the imine-substituted derivative PBDT-TTz exhibit PCE values as high as 8.4%, which largely outperform the analogue PBDT-TT-based ones with PCEs of only 0.7%. This work reveals that the imine substitution in polymer backbones of PBDT-TTz not only increases the ionization potential (IP) and electron affinity (EA), narrows the optical gap (E opt ), but also has significantly impacts on the BHJ film morphologies. PBDT-TTz:N2200 BHJ blends present better miscibility, suppressed phase separation, much stronger crystallinity, and face-on ordering, which contribute to efficient exciton dissociation, charge transportation, and therefore, high-efficiency in all-PSCs. This study demonstrates that the iminesubstituted polymers composed of TTz motif, which can be easily synthesized through a facile two-step procedure, are a promising class of wide-bandgap polymer donors for efficient all-PSCs.
A new process involving copper-catalyzed aerobic C(sp(2))-H activation, followed by cycloetherification, has been developed. This reaction serves as a direct method for the preparation of multisubstituted dibenzofurans starting with o-arylphenols. The presence of a strong para-electron-withdrawing group (e.g., NO(2)) on the phenol is essential for the success of the reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.