The intracellular circadian clock consists of a series of transcriptional modulators that together allow the cell to perceive the time of day. Circadian clocks have been identified within various components of the cardiovascular system (e.g. cardiomyocytes, vascular smooth muscle cells), and possess the potential to regulate numerous aspects of cardiovascular physiology and pathophysiology. The present study tested the hypothesis that ischemia/reperfusion (I/R; 30 minute occlusion of the rat left main coronary artery in vivo) alters the circadian clock within the ischemic, versus non-ischemic, region of the heart. Left ventricular anterior (ischemic) and posterior (non-ischemic) regions were isolated from I/R, sham-operated, and naïve rats over a 24 hour period, after which mRNAs encoding for both circadian clock components and known clock-controlled genes were quantified. Circadian clock gene oscillations (i.e. peak-to-trough fold differences) were rapidly attenuated in the I/R, versus the non-ischemic, region. Consistent with decreased circadian clock output, we observe a rapid induction of E4BP4 in the ischemic region of the heart at both the mRNA and protein levels. In contrast with I/R, chronic (1 week) hypobaric chamber-induced hypoxia did not attenuate oscillations in circadian clock genes in either the left or right ventricle of the rat heart. In conclusion, these data show that in a rodent model of myocardial I/R, circadian clocks within the ischemic region become rapidly impaired, through a mechanism that appears to be independent of hypoxia.
Respiratory sinus arrhythmia (RSA) represents a physiological phenomenon of cardiopulmonary interaction. It is known as a measure of efficiency of the circulation system, as well as a biomarker of cardiac vagal and well-being. In this article, RSA is modeled as modulation of heart rate by respiration in an interactive cardiopulmonary system with the most effective system state of resonance. By mathematically modeling of this modulation, we propose a quantitative measurement for RSA referred to as "Cardiopulmonary Resonance Function (CRF) and Cardiopulmonary Resonance Indices (CRI)," which are derived by disentanglement of the RR-intervals series into respiratory-modulation component, R-HRV, and the rest, NR-HRV using spectral G-causality. Evaluation of CRI performance in quantifying RSA has been conducted in the scenarios of paced breathing and in the different sleep stages. The preliminary experimental results have shown superior representation ability of CRF and CRI compared to Heart Rate Variability (HRV) and Cardiopulmonary Coupling index (CPC).
Purpose
The implied assembly constraints of a computer-aided design (CAD) model (e.g. hierarchical constraints, geometric constraints and topological constraints) represent an important basis for product assembly sequence intelligent planning. Assembly prior knowledge contains factual assembly knowledge and experience assembly knowledge, which are important factors for assembly sequence intelligent planning. This paper aims to improve monotonous assembly sequence planning for a rigid product, intelligent planning of product assembly sequences based on spatio-temporal semantic knowledge is proposed.
Design/methodology/approach
A spatio-temporal semantic assembly information model is established. The internal data of the CAD model are accessed to extract spatio-temporal semantic assembly information. The knowledge system for assembly sequence intelligent planning is built using an ontology model. The assembly sequence for the sub-assembly and assembly is generated via attribute retrieval and rule reasoning of spatio-temporal semantic knowledge. The optimal assembly sequence is achieved via a fuzzy comprehensive evaluation.
Findings
The proposed spatio-temporal semantic information model and knowledge system can simultaneously express CAD model knowledge and prior knowledge for intelligent planning of product assembly sequences. Attribute retrieval and rule reasoning of spatio-temporal semantic knowledge can be used to generate product assembly sequences.
Practical implications
The assembly sequence intelligent planning example of linear motor highlights the validity of intelligent planning of product assembly sequences based on spatio-temporal semantic knowledge.
Originality/value
The spatio-temporal semantic information model and knowledge system are built to simultaneously express CAD model knowledge and assembly prior knowledge. The generation algorithm via attribute retrieval and rule reasoning of spatio-temporal semantic knowledge is given for intelligent planning of product assembly sequences in this paper. The proposed method is efficient because of the small search space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.