Mineral nutrition plays a critical role in growth and bone mineralization in meat ducks as well as reproductive performance in duck layers and duck breeders. In addition to improving production performance parameters, minerals are also essential to support several enzymatic systems to enhancing antioxidant ability and immune function. This review explores the biological function and metabolism of minerals in the body, as well as mineral feeding strategy of various species of ducks. Topics range from mineral requirement to the physiological role of macroelements such as calcium and phosphorus and microelements such as zinc and selenium, etc. As with the improvement of genetic evolution and upgrade of rearing system in duck production, mineral requirements and electrolyte balance are urgent to be re-evaluated using sensitive biomarkers for the modern duck breed characterized by the rapid growth rate and inadequate bone development and mineralization. For duck breeders, mineral nutrition is not only required for maximal egg production performance but also for maintaining normal embryonic development and offspring's performance. Therefore, the proper amounts of bioavailable minerals need to be supplemented to maintain the mineral nutritional state of duck species during all phases of life. In addition, more positive effects of high doses microelements supplementations have been revealed for modern meat ducks subjected to various stresses in commercial production. The nutritional factors of mineral sources, supplemental enzymes, and antinutritional factors from unconventional ingredients should be emphasized to improve the effectiveness of mineral nutrition in duck feed formulation. Organic mineral sources and phytase enzymes have been adopted to reduce the antagonistic action between mineral and antinutritional factors. Therefore, special and accurate database of mineral requirements should be established for special genotypes of ducks under different rearing conditions, including rearing factors, environmental stresses and diets supplemented with organic sources, phytase and VD
3
.
Liver hepatocellular carcinoma (LIHC) is a highly lethal malignant tumor originating from the digestive system, which is a serious threat to human health. In recent years, immunotherapy has shown significant therapeutic effects in the treatment of LIHC, but only for a minority of patients. The basement membrane (BM) plays an important role in the occurrence and development of tumors, including LIHC. Therefore, this study is aimed at establishing a risk score model based on basement membrane-related genes (BMRGs) to predict patient prognosis and response to immunotherapy. First, we defined three patterns of BMRG modification (C1, C2, and C3) by consensus clustering of BMRG sets and LIHC transcriptome data obtained from public databases. Survival analysis showed that patients in the C2 group had a better prognosis, and Gene Set Variation Analysis (GSVA) revealed that the statistically significant pathways were mainly enriched in the C2 group. Moreover, we performed Weighted Correlation Network Analysis (WGCNA) on the above three subgroups and obtained 179 intersecting genes. We further applied function enrichment analyses, and the results demonstrated that they were mainly enriched in metabolism-related pathways. Furthermore, we conducted the LASSO regression analysis and obtained 4 BMRGs (MPV17, GNB1, DHX34, and MAFG) that were significantly related to the prognosis of LIHC patients. We further constructed a prognostic risk score model based on the above genes, which was verified to have good predictive performance for LIHC prognosis. In addition, we analyzed the correlation between the risk score and the tumor immune microenvironment (TIM), and the results showed that the high-risk scoring group tended to be in an immunosuppressed status. Finally, we investigated the relationship between the risk score and LIHC immune function. The results demonstrated that the risk score was closely related to the expression levels of multiple immune checkpoints. Patients in the low-risk group had significantly higher IPS scores, and patients in the high-risk group had lower immune escape and TIDE score. In conclusion, we established a novel risk model based on BMRGs, which may serve as a biomarker for prognosis and immunotherapy in LIHC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.