BackgroundIndoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first and rate-limiting step in converting tryptophan to kynurenine. Chimeric antigen receptor (CAR) T cells are T cells with recombinant receptors targeting tumor-associated antigens. The Food and Drug Administration has approved CAR T cells that target CD19 for treatment of advanced B cell leukemia and lymphoma. However, CAR T cell therapy in solid tumors has been hampered by multiple obstacles. Preclinical and clinical studies suggest that combinatorial immune checkpoint blockade and IDO1 inhibition provide durable therapeutic efficacy against cancer. Yet, the combination of IDO1 inhibition and CAR T has not been attempted.MethodsWe analyze IDO1 downregulation by miR-153 in colon cancer cells and the association of IDO1 and miR-153 expression with colorectal patient survival. We generate CAR T cells targeting the epidermal growth factor receptor variant III and measure their tumor killing effects against colon cancer cells with or without miR-153 overexpression by killing assays and in xenografts.ResultsIDO1 is highly expressed in colorectal tumors and is inversely associated with patient survival. miR-153 directly inhibits IDO1 expression by targeting its 3′ untranslated region in colon cancer cells; yet, miR-153 overexpression does not affect cancer cell survival, apoptosis, and colony formation. When colon cancer cells are targeted by CAR T cells, miR-153 overexpression within tumor cells significantly enhances T cell killing in vitro and suppresses xenograft tumor growth in mice.ConclusionsThese findings indicate that miR-153 inhibits IDO1 expression in colon cancer cells and is a tumor-suppressive miRNA that enhances CAR T cell immunotherapy. This study supports the combinatorial use of IDO1 inhibitors and CAR T cells in treating solid tumors.Electronic supplementary materialThe online version of this article (10.1186/s13045-018-0600-x) contains supplementary material, which is available to authorized users.
MicroRNAs (miRNAs) play a very important role in the development of acute myeloid leukemia (AML). This study focuses on the effects of miR-9 on the regulation of AML cells and their related signaling pathways. We found that the expression of miR-9 was significantly decreased in four AML cell lines (THP-1, HL-60, TF-1 and KG-1) compared with the human normal bone marrow cells (HS-5). Moreover, miR-9 overexpression inhibited HL-60 cell proliferation ability, and promoted apoptosis. However, interfering with miR-9 expression promoted the proliferation of HL-6 cells and inhibited apoptosis. Western blotting results subsequently showed that overexpression of miR-9 could elevate the expression of MAT1, LATS1, and LATS2 in HL-60 cells, and inhibit the expression of YAP, while the interference with miR-9 had the opposite result. Taken together, miR-9 may act as a tumor suppressor by activating the Hippo/YAP signaling pathway of AML cells, which in this way supply ideas for the clinical remedy of AML patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.