The emergence of multidrug resistant bacteria has resulted in plenty of stubborn nosocomial infections and severely threatens human health. Developing novel bactericide and therapeutic strategy is urgently needed. Herein, mesoporous silica supported silver–bismuth nanoparticles (Ag‐Bi@SiO2 NPs) are constructed for synergistic antibacterial therapy. In vitro experiments indicate that the hyperthermia originating from Bi NPs can disrupt cell integrity and accelerate the Ag ions release, further exhibiting an excellent antibacterial performance toward methicillin‐resistant Staphylococcus aureus (MRSA). Besides, under laser irradiation, Ag‐Bi@SiO2 NPs at 100 µg mL−1 can effectively obliterate mature MRSA biofilm and cause a 69.5% decrease in the biomass, showing a better therapeutic effect than Bi@SiO2 NPs with laser (26.8%) or Ag‐Bi@SiO2 NPs without laser treatment (30.8%) groups. More importantly, in vivo results confirm that ≈95.4% of bacteria in abscess are killed and the abscess ablation is accelerated using the Ag‐Bi@SiO2 NPs antibacterial platform. Therefore, Ag‐Bi@SiO2 NPs with photothermal‐enhanced antibacterial activity are a potential nano‐antibacterial agent for the treatment of skin infections.
The combination of reactive oxygen species‐involved chemodynamic therapy (CDT) and photothermal therapy (PTT) holds great promise in enhancing anticancer effects. Herein, a multifunctional Fe‐doped polyoxometalate (Fe‐POM) cluster is fabricated via a simple method. The Fe‐POM can not only be utilized as PTT agents to generate a hyperthermia effect for cancer cell killing under near‐infrared (NIR) II laser (1060 nm) irradiation, but also can be used as CDT agents to convert endogenous less‐reactive H2O2 into harmful ·OH and simultaneously deplete glutathione for an amplified CDT effect. Notably, the hyperthermia induced by PTT can further enhance the CDT effect, achieving a synergistic PTT/CDT effect. Owing to the self‐assembling properties at lowered pH values, the Fe‐POM exhibits high tumor accumulation as revealed by photoacoustic imaging. More importantly, Fe‐POM enables effective destruction of tumors without inducing noticeable damage to normal tissues under 1060 nm laser irradiation. The work presents a new type of multifunctional agent with high PTT/CDT efficacy, providing promising methods for PTT‐enhanced CDT in a NIR‐II biowindow.
Subcutaneous abscesses caused by drug-resistant pathogens pose a serious challenge to human health. To overcome this problem, here-in an acidity-responsive ag-gregated W/Mo-based poly-oxometalate (POM) was de-veloped for photothermal-enhanced chemodynamic antibacterial...
A unidirectional coherent random laser based on liquid waveguide gain channels with biological scatters is demonstrated. The optical feedback of the random laser is provided by both light scattering and waveguide confinement. This waveguide-scattering-feedback scheme not only reduces the pump threshold but also makes the output of random laser directional. The threshold of our random laser is about 11 μJ. The emission spectra can be sensitively tuned by changing pump position due to the micro/nano-scale randomness of butterfly wings. It shows the potential applications of optofluidic random lasers for bio-chemical sensors on-chip.
Exploring cost‐efficient, high‐active bifunctional electrochemical catalysts with long‐term stability are significant for green economy. Herein, a noble‐metal‐free sandwich‐structured catalyst, prepared with facile hydrothermal method and phosphorization process, in which the amorphous MoSx serves as an intermediate layer between the Fe‐doped Ni2P and Ni foam substrate (Fe‐Ni2P/MoSx/NF) is reported. The obtained free‐standing catalyst performs an enhanced electrochemical activity compared with Fe‐Ni2P/NF and MoSx/NF. The Fe‐Ni2P/MoSx/NF catalyst only requires overpotentials of 246 mV to achieve 10 mA cm−2 and 277 mV to reach 50 mA cm−2 for oxygen evolution reaction process with a low Tafel slope of 59.7 mV dec−1 in alkaline solution. Meanwhile, an overpotential of 112 mV is demanded to reach 10 mA cm−2 for hydrogen evolution reaction. When the Fe‐Ni2P/MoSx/NF is used as two electrodes for overall water splitting, it requires 1.61 V to attain 10 mA cm−2 with prominent durability. This approach provides a versatile strategy to construct excellent bifunctional catalysts for effective water electrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.