BackgroundDynamic N6-methyladenosine (m6A) modification was previously identified as a ubiquitous post-transcriptional regulation that affected mRNA homeostasis. However, the m6A-related epitranscriptomic alterations and functions remain elusive in human cancer. Here we aim to identify the profile and outcome of m6A-methylation in hepatocellular carcinoma (HCC).ResultsUsing liquid chromatography-tandem mass spectrometry and m6A-immunoprecipitation in combination with high-throughput sequencing, we determined the m6A-mRNA levels in human HCC. Human HCC exhibited a characteristic gain of m6A modification in tandem with an increase of mRNA expression, owing to YTH domain family 2 (YTHDF2) reduction. The latter predicted poor classification and prognosis of HCC patients, and highly correlated with HCC m6A landscape. YTHDF2 silenced in human HCC cells or ablated in mouse hepatocytes provoked inflammation, vascular reconstruction and metastatic progression. Mechanistically, YTHDF2 processed the decay of m6A-containing interleukin 11 (IL11) and serpin family E member 2 (SERPINE2) mRNAs, which were responsible for the inflammation-mediated malignancy and disruption of vascular normalization. Reciprocally, YTHDF2 transcription succumbed to hypoxia-inducible factor-2α (HIF-2α). Administration of a HIF-2α antagonist (PT2385) restored YTHDF2-programed epigenetic machinery and repressed liver cancer.ConclusionOur results have characterized the m6A-mRNA landscape in human HCC and revealed YTHDF2 as a molecular ‘rheostat’ in epitranscriptome and cancer progression.
and T.C.M.F. performed all of the retrovirus transductions and confocal microscopy. J.U. developed the PEPCK tetramer and provided advice on its use. N.G. and W.R.H. produced the Plasmodium peptide-MHC I tetramer and helped design the PbT-I cell-killing assays.
BackgroundIt has been previously reported that IL-22, one of the cytokines secreted by Th17 cells, demonstrates both a protective and inflammatory promotion effect in inflammatory bowel disease (IBD) through STAT3 signaling activation. We sought to investigate the role of IL-22 expression in colon cancer (CC).MethodsThe expression of IL-22 and related molecules were detected in human CC, the detail function and mechanism of IL-22 were investigated by in vivo and in vitro model.ResultsOur results demonstrated significant upregulation of IL-22 in human CC tumor infiltrated leukocytes (TILs) compared to peripheral lymphocytes. Moreover, our findings demonstrated that IL-22 expression was significantly higher in ulcerative colitis (UC) tissues versus normal colon tissues. Both IL-22 receptor α1 (IL-22RA1) and IL-23 were highly expressed in CC and UC tissues compared to normal controls. TILs exhibiting various IL-22 expression levels isolated from CC patients were demonstrated to enhance tumor growth and metastasis co-transplanted with Hct-116 cells underwent subcutaneous transplantation in mice model. Tumor growth and metastasis was promoted by STAT3 phosphorylation and upregulation of its downstream genes such as Bcl-xl, CyclinD1, and VEGF. In vitro studies confirmed the anti-apoptotic and pro-proliferation effect of IL-22 according to the BrdU cooperation assay and peroxide induced apoptosis analysis with or without the presence of IL-22.ConclusionIn this study we demonstrated that excessive IL-22 in the CC and UC microenvironment leads to tumor growth, inhibition of apoptosis, and promotion of metastasis depend on STAT3 activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.