The decrease in sequencing cost and increased sophistication of assembly algorithms for short-read platforms has resulted in a sharp increase in the number of species with genome assemblies. However, these assemblies are highly fragmented, with many gaps, ambiguities, and errors, impeding downstream applications. We demonstrate current state of the art for de novo assembly using the domestic goat (Capra hircus), based on long reads for contig formation, short reads for consensus validation, and scaffolding by optical and chromatin interaction mapping. These combined technologies produced the most continuous de novo mammalian assembly to date, with chromosome-length scaffolds and only 649 gaps. Our assembly represents a ~400-fold improvement in continuity due to properly assembled gaps compared to the previously published C. hircus assembly, and better resolves repetitive structures longer than 1 kb, representing the largest repeat family and immune gene complex ever produced for an individual of a ruminant species.
BackgroundMilk exosomes are a rich source of microRNAs (miRNAs) that are protected from degradation. Ingestion of milk and subsequent absorption of miRNAs into recipient cells by endocytosis may play a role in the regulation of neonatal innate and adaptive immunity. In contrast, the miRNA content of milk exosomes may also be indicative of a lactating animal’s health; whereby, the presence or absence of specific miRNAs could serve as biomarkers for early detection of bacterial infection that can lead to mastitis. In the present study, we therefore analyzed and compared miRNA expression profiles of milk exosomes from four Holstein cows obtained during mid-lactation prior to and after infection (48 h) of the mammary gland with Staphylococcus aureus.MethodsMilk exosomes, purified from control and S. aureus infected cows, were extracted for RNA. Following preparation indexed libraries from both groups the samples were subjected to next generation sequencing.ResultsNext generation sequencing of eight, unpooled small RNA libraries derived from milk exosomes produced about 60.5 million high-quality, bovine-specific sequence reads for comparison of miRNA expression between treatments. Sequence identity analysis showed the miRNAs make up about 13 % of the average RNA content of these exosomes. Although 417 known bovine miRNAs were identified, miRNAs represented the least diverse class of RNA accounting for only 1 % of all unique sequences. The 20 most prevalent unique sequences within this class accounted for about 90 % of the total miRNA-associated reads across samples. Non-annotated, unique reads provided evidence for another 303 previously unknown bovine miRNAs. Expression analyses found 14 known bovine microRNAs significantly differed in frequency between exosomes from infected and control animals.ConclusionsOur survey of miRNA expression from uninfected milk exosomes and those produced in response to infection provides new and comprehensive information supporting a role for delivery into milk of specific miRNAs involved in immune response. In particular, bta-miR-142-5p, and −223 are potential biomarkers for early detection of bacterial infection of the mammary gland. Additionally, 22 mammary-expressed genes involved in regulation of host immune processes and response to inflammation were identified as potential binding targets of the differentially expressed miRNAs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2044-9) contains supplementary material, which is available to authorized users.
Haemonchus contortus is arguably the most injurious helminth parasite for small ruminants. We characterized the impact of H. contortus infection on the caprine abomasal microbiome. Fourteen parasite naive goats were inoculated with 5,000 H. contortus infective larvae and followed for 50 days. Six age-matched naïve goats served as uninfected controls. Reduced bodyweight gain and a significant increase in the abosamal pH was observed in infected goats compared to uninfected controls. Infection also increased the bacterial load while reducing the abundance of the Archaea in the abomasum but did not appear to affect microbial diversity. Nevertheless, the infection altered the abundance of approximately 19% of the 432 species-level operational taxonomic units (OTU) detected per sample. A total of 30 taxa displayed a significantly different abundance between control and infected goats. Furthermore, the infection resulted in a distinct difference in the microbiome structure. As many as 8 KEGG pathways were predicted to be significantly affected by infection. In addition, H. contortus-induced changes in butyrate producing bacteria could regulate mucosal inflammation and tissue repair. Our results provided insight into physiological consequences of helminth infection in small ruminants and could facilitate the development of novel control strategies to improve animal and human health.
Milk-derived exosomes were identified as a novel mechanism of mother-to-child transmission of regulatory molecules, but their functions in intestinal tissues of neonates are not well-studied. Here, we characterized potential roles of porcine milk-derived exosomes in the intestinal tract. In vitro, treatment with milk-derived exosomes (27 ± 3 ng and 55 ± 5 ng total RNA) significantly promoted IPEC-J2 cell proliferation by MTT, CCK8, EdU fluorescence and EdU flow cytometry assays. The qRT-PCR and Western blot analyses indicated milk-derived exosomes (0.27 ± 0.03 μg total RNA) significantly promoted expression of CDX2, IGF-1R and PCNA, and inhibited p53 gene expression involved in intestinal proliferation. Additionally, six detected miRNAs were significantly increased in IPEC-J2 cell, while FAS and SERPINE were significantly down-regulated relative to that in control. In vivo, treated groups (0.125 μg and 0.25 μg total RNA) significantly raised mice’ villus height, crypt depth and ratio of villus length to crypt depth of intestinal tissues, significantly increased CDX2, PCNA and IGF-1R’ expression and significantly inhibited p53′ expression. Our study demonstrated that milk-derived exosomes can facilitate intestinal cell proliferation and intestinal tract development, thus giving a new insight for milk nutrition and newborn development and health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.