Motivation: The Illumina paired-end sequencing technology can generate reads from both ends of target DNA fragments, which can subsequently be merged to increase the overall read length. There already exist tools for merging these paired-end reads when the target fragments are equally long. However, when fragment lengths vary and, in particular, when either the fragment size is shorter than a single-end read, or longer than twice the size of a single-end read, most state-of-the-art mergers fail to generate reliable results. Therefore, a robust tool is needed to merge paired-end reads that exhibit varying overlap lengths because of varying target fragment lengths.Results: We present the PEAR software for merging raw Illumina paired-end reads from target fragments of varying length. The program evaluates all possible paired-end read overlaps and does not require the target fragment size as input. It also implements a statistical test for minimizing false-positive results. Tests on simulated and empirical data show that PEAR consistently generates highly accurate merged paired-end reads. A highly optimized implementation allows for merging millions of paired-end reads within a few minutes on a standard desktop computer. On multi-core architectures, the parallel version of PEAR shows linear speedups compared with the sequential version of PEAR.Availability and implementation: PEAR is implemented in C and uses POSIX threads. It is freely available at http://www.exelixis-lab.org/web/software/pear.Contact: Tomas.Flouri@h-its.org
Motivation: Sequence-based methods to delimit species are central to DNA taxonomy, microbial community surveys and DNA metabarcoding studies. Current approaches either rely on simple sequence similarity thresholds (OTU-picking) or on complex and compute-intensive evolutionary models. The OTU-picking methods scale well on large datasets, but the results are highly sensitive to the similarity threshold. Coalescent-based species delimitation approaches often rely on Bayesian statistics and Markov Chain Monte Carlo sampling, and can therefore only be applied to small datasets.Results: We introduce the Poisson tree processes (PTP) model to infer putative species boundaries on a given phylogenetic input tree. We also integrate PTP with our evolutionary placement algorithm (EPA-PTP) to count the number of species in phylogenetic placements. We compare our approaches with popular OTU-picking methods and the General Mixed Yule Coalescent (GMYC) model. For de novo species delimitation, the stand-alone PTP model generally outperforms GYMC as well as OTU-picking methods when evolutionary distances between species are small. PTP neither requires an ultrametric input tree nor a sequence similarity threshold as input. In the open reference species delimitation approach, EPA-PTP yields more accurate results than de novo species delimitation methods. Finally, EPA-PTP scales on large datasets because it relies on the parallel implementations of the EPA and RAxML, thereby allowing to delimit species in high-throughput sequencing data.Availability and implementation: The code is freely available at www.exelixis-lab.org/software.html.Contact: Alexandros.Stamatakis@h-its.orgSupplementary information: Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.