Infections of the reproductive tract are known to contribute to testicular inflammatory impairment, leading to an increase of pro-inflammatory cytokines such as IL-1β, and a decline in sperm quality. Prokineticin 2 (PK2), a secretory protein, is closely associated with the secretion of pro-inflammatory cytokines in inflamed tissue. It was reported that increased PK2 is related to the upregulation of IL-1β, but the underlying mechanism remains elusive. Here, we illustrated that PK2 was upregulated in testicular macrophages (TM) in a rat model of uropathogenic Escherichia coli (UPEC) infection, which induced the activation of the NLRP3 inflammasome pathway to boost IL-1β secretion. Administration of PK2 inhibitor alleviated the inflammatory damage and suppressed IL-1β secretion. Moreover, PK2 promoted NLRP3 expression and the release of cleaved IL-1β from TM to the supernatants after the challenge with UPEC in vitro . IL-1β in the supernatants affected Leydig cells by suppressing the expression of genes encoding for the enzymes P450scc and P450c17, which are involved in testosterone production. Overall, we revealed that increased PK2 levels in TM in UPEC-induced orchitis may impair testosterone synthesis via the activation of the NLRP3 pathway. Our study provides a new insight into the mechanisms underlying inflammation-associated male infertility and suggests an anti-inflammatory therapeutic target for male infertility.
Background: Oxidative stress (OS), defined as an imbalance between excessive reactive oxygen species (ROS) and/ or reactive nitrogen species (RNS) production and antioxidant insufficiency, has been suggested to be involved in the pathogenesis of poor ovarian response (POR). Growth hormone (GH) can reduce OS in some cell types. This study investigated whether GH can improve OS and the in vitro fertilization and embryo transfer (IVF-ET) outcomes of poor ovarian responders. Methods: This study enrolled 105 patients with POR and 58 patients without POR (controls) who were diagnosed according to the Bologna criteria and underwent conventional IVF-ET. Poor ovarian responders were randomly assigned to two groups: the POR-GH group, which received pretreatment with GH 4 IU/d on day 2 of the previous menstrual cycle before IVF until the trigger day, and the POR-C group, which received no pretreatment. OS markers in follicular fluid (FF), ROS levels in granulosa cells (GCs), and the IVF outcomes of the groups were compared. Results: Endometrial thickness on trigger day, the number of cleaved embryos, the number of higher-quality embryos, and the rates of embryo formation, higher-quality embryo formation, implantation and clinical pregnancy were significantly increased in the POR-GH group compared with the POR-C group (P < 0.05). Moreover, compared to those in the non-POR group, FF malondialdehyde (MDA), total oxidant status (TOS), oxidative stress index (OSI) and ROS levels in GCs were significantly higher, whereas superoxide dismutase (SOD) and the total antioxidant capacity (TAC) were significantly lower in the POR-C group (P < 0.05). Furthermore, compared with those in the POR-C group, the FF TAC was significantly increased in the POR-GH group, and TOS, OSI and intracellular ROS levels were significantly reduced (P < 0.05).
Objectives: CSE1L has been reported to be highly expressed in various tumours.Testicular germ cell tumours are common among young males, and seminoma is the major type. However, whether CSE1L has functions in the seminoma is unclear. Materials and methods:The expression of CSE1L was detected by immunohistochemistry in seminoma tissues and non-tumour normal testis tissues from patients.CSE1L distribution during cell mitosis was determined by immunofluorescent staining with CSE1L, α-tubulin and γ-tubulin antibodies. The effects of Cse1L knockdown on cell proliferation and cell cycle progression were determined by Cell Counting Kit-8 assay, flow cytometry, PH3 staining and bromodeoxyuridine incorporation assay.Results: CSE1L was significantly enriched in the seminoma tissue compared with the non-tumour normal testis tissue. CSE1L also co-localized with α-tubulin in the cells with a potential to divide. In the seminoma cell line TCam-2, CSE1L was associated with the spindles and the centrosomes during cell division. The knockdown of CSE1L in TCam-2 cells attenuated the cells' proliferative capacity. Cell cycle assay revealed that the CSE1L-deficient cells were mainly arrested in the G0/G1 phase and moderately delayed in the G2/M phase. The proportion of cells with multipolar spindle and abnormal spindle geometry was obviously increased by CSE1L expression silencing in the TCam-2 cells. Conclusions:Overall, these findings showed that CSE1L plays a pivotal role in maintaining cell proliferation and cell division in seminomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.