In order to solve the problem of node information loss during user matching in the existing user identification method of fixed community across the social network based on user topological relationship, Two-Stage User Identification Based on User Topology Dynamic Community Clustering (UIUTDC) algorithm is proposed. Firstly, we perform community clustering on different social networks, calculate the similarity between different network communities, and screen out community pairs with greater similarity. Secondly, two-way marriage matching is carried out for users between pairs of communities with high similarity. Then, the dynamic community clustering was performed by resetting the different community clustering numbers. Finally, the iteration is repeated until no new matching user pairs are generated, or the set number of iterations is reached. Experiments conducted on real-world social networks Twitter-Foursquare datasets demonstrate that compared with the global user matching method and hidden label node method, the average accuracy of the proposed UIUTDC algorithm is improved by 33% and 26.8%, respectively. In the case of only user topology information, the proposed UIUTDC algorithm effectively improves the accuracy of identity recognition in practical applications.
It is of great significance for individuals, enterprises, and government departments to analyze and excavate the sentiment in the comments. Many deep learning models are used for text sentiment analysis, and the BiTCN model has good efficacy on sentiment analysis. However, in the actual semantic expression, the contribution of each word to the sentiment tendency is different, BiTCN treats it fairly and does not pay more attention to the key sentiment words. For this problem, a sentiment analysis model based on the BiTCN-Attention is proposed in this paper. The Self-Attention mechanism and Multi-Head Self-Attention mechanism are added to BiTCN respectively to form BiTCN-SA and BiTCN-MHSA, which improve the weight of sentiment words and the accuracy of feature extraction, to increase the effect of sentiment analysis. The experimental results show that the model accuracies of BiTCN-SA and BiTCN-MHSA in the JingDong commodity review data set are 3.96% and 2.41% higher than that of BiTCN, respectively. In the comment data set of DianPing, the accuracy of BiTCN-SA and BiTCN-MHSA improved by 4.62% and 3.49%, respectively, compared with that of BiTCN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.