Conflicting results identifying the association between tooth loss and cardiovascular disease and stroke have been reported. Therefore, a dose-response meta-analysis was performed to clarify and quantitatively assess the correlation between tooth loss and cardiovascular disease and stroke risk. Up to March 2017, seventeen cohort studies were included in current meta-analysis, involving a total of 879084 participants with 43750 incident cases. Our results showed statistically significant increment association between tooth loss and cardiovascular disease and stroke risk. Subgroups analysis indicated that tooth loss was associated with a significant risk of cardiovascular disease and stroke in Asia and Caucasian. Furthermore, tooth loss was associated with a significant risk of cardiovascular disease and stroke in fatal cases and nonfatal cases. Additionally, a significant dose-response relationship was observed between tooth loss and cardiovascular disease and stroke risk. Increasing per 2 of tooth loss was associated with a 3% increment of coronary heart disease risk; increasing per 2 of tooth loss was associated with a 3% increment of stroke risk. Subgroup meta-analyses in study design, study quality, number of participants and number of cases showed consistent findings. No publication bias was observed in this meta-analysis. Considering these promising results, tooth loss might provide harmful health benefits.
Cardiovascular diseases rank the top cause of morbidity and mortality worldwide and are usually associated with blood reperfusion after myocardial ischemia/reperfusion injury (MIRI), which often causes severe pathological damages and cardiomyocyte apoptosis. LSINCT5 expression in the plasma of MI patients (n = 53), healthy controls (n = 42) and hypoxia-reoxygenation (HR)-treated cardiomyocyte AC16 cells was examined using qRT-PCR. The effects of LSINCT5 on cell viability and apoptosis were detected by MTT and flow cytometry, respectively. The expression of apoptosis-related proteins Bcl2, Bax and caspase 3 were tested by Western blot. The interaction between LSINCT5 and miR-222 was predicted by bioinformatic analysis. Moreover, changes in viability and apoptosis of AC16 cells co-transfected with siLSINCT5 and miR-222 inhibitor after HR treatment were examined. At last, the expression of proteins in PI3K/AKT pathway, namely PTEN, PI3K and AKT, was examined to analyze the possible pathway participating in LSINCT5-mediated MI/RI. Our study showed that LSINCT5 expression was upregulated in the plasma of MI patients and HR-treated AC16 cells. LSINCT5 overexpression significantly decreased cell viability and apoptosis. Luciferase reporter gene assay and RNA pulldown assay showed that LSINCT5 was a molecular sponge of miR-222. MiR-222 silencing in AC16 cells simulated the phenotypes of MIRI patients and HR-treated cells, indicating that LSINCT5 functions via miR-222 to regulate proliferation and apoptosis of HR-treated AC16 cells. We also showed that proteins of PI3K/AKT signaling pathway were affected in HR-treated AC16 cells, and LSINTC5 knockdown rescued these effects. LncRNA LSINCT5 was upregulated during MI pathogenesis, and LSINCT5 regulated MIRI possibly via a potential LSINCT5/miR-222 axis and PI3K/AKT signaling pathway. Our findings may provide novel evidence for MIRI prevention.
The proposed study was to develop the preparation of ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) modified with citric acid, with surface conjugated with lactoferrin (Lf), which used as a potential targeted contrast agent for magnetic resonance imaging (MRI) of brain glioma. USPIONs were prepared by the thermal decomposition method. The hydrophobic USPIONs were coated with citric acid by the ligand exchange method. Then, Lf was conjugated into the surface of USPIONs. The obtained Lf-USPIONs were analyzed by fourier transform infrared (FTIR) spectroscopy and polyacrylamide gel electrophoresis. The size, size distribution, shape and superparamagnetic property of Lf-USPIONs were investigated with TEM and vibrating sample magnetometer (VSM). Both FTIR and electrophoresis analysis demonstrated the successful conjugation of Lf to the surface of USPIONs. The average size of Lf-USPIONs was about 8.4 ± 0.5 nm, which was determined using the statistics of measured over 100 nanoparticles in the TEM image, with a negative charge of −7.3 ± 0.2 mV. TEM imaging revealed that Lf-USPIONs were good in dispersion and polygonal in morphology. VSM results indicated that Lf-USPIONs were superparamagnetic and the saturated magnetic intensity was about 69.8 emu/g. The Lf-USPIONs also showed good biocompatibility in hemolysis, cytotoxicity, cell migration and blood biochemistry studies. MR imaging results in vitro and in vivo indicated that Lf-USPIONs exhibited good negative contrast enhancement. Taken together, Lf-USPIONs hold great potential for brain gliomas MR imaging as a nanosized targeted contrast agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.