Infectious diseases caused by pathogenic microorganisms such as viruses and bacteria pose a great threat to human health. Although a significant progress has been obtained in the diagnosis and prevention of infectious diseases, it still remains challenging to develop rapid and cost-effective detection approaches and overcome the side effects of therapeutic agents and pathogen resistance. Functional nucleic acids (FNAs), especially the most widely used aptamers and DNAzymes, hold the advantages of high stability and flexible design, which make them ideal molecular recognition tools for bacteria and viruses, as well as potential therapeutic drugs for infectious diseases. This review summarizes important advances in the selection and detection of bacterial-and virus-associated FNAs, along with their potential prevention ability of infectious disease in recent years. Finally, the challenges and future development directions are concluded.
Biopanning, a common affinity selection approach in phage display, has evolved numerous ligands for diagnosis, imaging, delivery, and therapy applications. However, traditional biopanning has suffered from time-consuming processes, highly-repetitive procedures...
The double monoclonal display (dm-Display) has realized highly efficient monoclonal ligand screening, which can accelerate the whole process from weeks to 24 h with clone characterization throughput 1000-time higher than that of traditional approach.
The multivalent effect is often used to engineer microfluidic affinity interfaces to improve the target separation efficiency. Currently, no design rules exist for thermodynamic and kinetic tuning of properly joining multiple ligands. Herein, we developed a thermodynamic and kinetic modulating strategy of the microfluidic affinity interface via a merit-complementary-heteromultivalent aptamers functionalized DNA nanoassembly. Our strategy is built on the two types of identified aptamers that bind to distinct sites of EpCAM. The aptamer binding of one type is more rapid but less tight, while the other is opposite. By assembling the two types of aptamers together with a tetrahedral DNA framework, we fully exploited these aptamers' merits for tight and rapid recognition of EpCAM, leading to target cell capture with high efficiency and throughput. Our strategy provides a perspective on engineering multivalent recognition molecules through thermodynamic and kinetic tuning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.