Background Antimicrobial peptides are promising alternative antimicrobial agents to combat MDR. DP7, an antimicrobial peptide designed in silico, possesses broad-spectrum antimicrobial activities and immunomodulatory effects. However, the effects of DP7 against Pseudomonas aeruginosa and biofilm infection remain largely unexplored. Objectives To assess (i) the antimicrobial activity of DP7 against MDR P. aeruginosa; and (ii) the antibiofilm activity against biofilm infection. Also, to preliminarily investigate the possible antimicrobial mode of action. Methods The MICs of DP7 for 104 clinical P. aeruginosa strains (including 57 MDR strains) and the antibiofilm activity were determined. RNA-Seq, genome sequencing and cell morphology were conducted. Both acute and chronic biofilm infection mouse models were established. Two mutants, resulting from point mutations associated with LPS and biofilms, were constructed to investigate the potential mode of action. Results DP7, at 8–32 mg/L, inhibited the growth of clinical P. aeruginosa strains and, at 64 mg/L, reduced biofilm formation by 43% to 68% in vitro. In acute lung infection, 0.5 mg/kg DP7 exhibited a 70% protection rate and reduced bacterial colonization by 50% in chronic infection. DP7 mainly suppressed gene expression involving LPS and outer membrane proteins and disrupted cell wall structure. Genome sequencing of the DP7-resistant strain DP7R revealed four SNPs controlling LPS and biofilm production. gshA44 and wbpJ139 mutants displayed LPS reduction and motility deficiency, conferring the reduction of LPS and biofilm biomass of strain DP7R and indicating that LPS was a potential target of DP7. Conclusions These results demonstrate that DP7 may hold potential as an effective antimicrobial agent against MDR P. aeruginosa and related infections.
Aims: Accumulating evidence suggests that Porphyromonas gingivalis is closely associated with the development of various chronic inflammatory diseases, particularly periodontitis. This study investigated the antibacterial activity and action mechanism of a novel antimicrobial peptide (AMP), DP7, against P. gingivalis. Methods and Results:The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for DP7 were determined via a broth microdilution method, revealing an MIC of 8 μg ml −1 and MBC of 32 μg ml −1 . Growth inhibition and killing assays confirmed the bactericidal effect of DP7, and treatment with DP7 at MBC eliminated P. gingivalis within 8 h. DP7 had a low cytotoxic effect against human cells. Transmission electron microscopy revealed that DP7 destroyed the bacterial membrane, and confocal laser scanning microscopy revealed its inhibitory effect on P. gingivalis biofilms. Quantitative reverse transcription-polymerase chain reaction revealed DP7-mediated inhibition of several virulence factor genes, partially explaining its antibacterial mechanism.Conclusions: DP7, a novel AMP with low mammalian cytotoxicity, inhibits both planktonic and biofilm forms of P. gingivalis by destroying the bacterial membrane and reducing virulence factor gene expression.Significance and Impact of the Study: DP7 has potential clinical application in the prevention and treatment of P. gingivalis-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.