The capability of acquiring accurate and dense three-dimensional geospatial information that covers large survey areas rapidly enables airborne light detection and ranging (LiDAR) has become a powerful technology in numerous fields of geospatial applications and analysis. LiDAR data filtering is the first and essential step for digital elevation model generation, land cover classification, and object reconstruction. The morphological filtering approaches have the advantages of simple concepts and easy implementation, which are able to filter non-ground points effectively. However, the filtering quality of morphological approaches is sensitive to the structuring elements that are the key factors for the filtering success of mathematical operations. Aiming to deal with the dependence on the selection of structuring elements, this paper proposes a novel filter of LiDAR point clouds based on geodesic transformations of mathematical morphology. In comparison to traditional morphological transformations, the geodesic transformations only use the elementary structuring element and converge after a finite number of iterations. Therefore, this algorithm makes it unnecessary to select different window sizes or determine the maximum window size, which can enhance the robustness and automation for unknown environments. Experimental results indicate that the new filtering method has promising and competitive performance for diverse landscapes, which can effectively preserve terrain details and filter non-ground points in various complicated environments.
Graph classification, which aims to identify the category labels of graphs, plays a significant role in drug classification, toxicity detection, protein analysis etc. However, the limitation of scale of benchmark datasets makes it easy for graph classification models to fall into over-fitting and undergeneralization. Towards this, we introduce data augmentation on graphs and present two heuristic algorithms: random mapping and motif-similarity mapping, to generate more weakly labeled data for small-scale benchmark datasets via heuristic modification of graph structures. Furthermore, we propose a generic model evolution framework, named M-Evolve, which combines graph augmentation, data filtration and model retraining to optimize pre-trained graph classifiers. Experiments conducted on six benchmark datasets demonstrate that M-Evolve helps existing graph classification models alleviate over-fitting when training on small-scale benchmark datasets and yields an average improvement of 3-12% accuracy on graph classification tasks. CCS CONCEPTS • Mathematics of computing → Graph algorithms; • Computing methodologies → Supervised learning by classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.