Increasingly, consumers are moving towards a more plant-based diet. However, some consumers are avoiding common plant proteins such as soy and gluten due to their potential allergenicity. Therefore, alternative protein sources are being explored as functional ingredients in foods, including pea, chickpea, and other legume proteins. The factors affecting the functional performance of plant proteins are outlined, including cultivars, genotypes, extraction and drying methods, protein level, and preparation methods (commercial versus laboratory). Current methods to characterize protein functionality are highlighted, including water and oil holding capacity, protein solubility, emulsifying, foaming, and gelling properties. We propose a series of analytical tests to better predict plant protein performance in foods. Representative applications are discussed to demonstrate how the functional attributes of plant proteins affect the physicochemical properties of plant-based foods. Increasing the protein content of plant protein ingredients enhances their water and oil holding capacity and foaming stability. Industrially produced plant proteins often have lower solubility and worse functionality than laboratory-produced ones due to protein denaturation and aggregation during commercial isolation processes. To better predict the functional performance of plant proteins, it would be useful to use computer modeling approaches, such as quantitative structural activity relationships (QSAR).
Thermostable Mn-dependent catalases are promising enzymes in biotechnological applications. In the present study, a Mn-containing superoxide dismutase of the hyperthermophilic Thermus thermophilus HB27 had been purified and characterized by a two-stage ultrafiltration process after being expressed in E. coli. The enzyme was highly stable at 90°C and retained 57% activity after heat treatment at 100°C for 1 h. The native form of the enzyme was determined as a homotetramer by analytical size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The final purified enzyme had an isoelectric point of 6.2 and a high α-helical content of 70%, consistent with the theoretical values. This showed that the purified SOD folded with a reasonable secondary structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.