Random vector functional link and extreme learning machine have been extended by the type-2 fuzzy sets with vector stacked methods, this extension leads to a new way to use tensor to construct learning structure for the type-2 fuzzy sets-based learning framework. In this paper, type-2 fuzzy sets-based random vector functional link, type-2 fuzzy sets-based extreme learning machine and Tikhonov-regularized extreme learning machine are fused into one network, a tensor way of stacking data is used to incorporate the nonlinear mappings when using type-2 fuzzy sets. In this way, the network could learn the sub-structure by three sub-structures’ algorithms, which are merged into one tensor structure via the type-2 fuzzy mapping results. To the stacked single fuzzy neural network, the consequent part parameters learning is implemented by unfolding tensor-based matrix regression. The newly proposed stacked single fuzzy neural network shows a new way to design the hybrid fuzzy neural network with the higher order fuzzy sets and higher order data structure. The effective of the proposed stacked single fuzzy neural network are verified by the classical testing benchmarks and several statistical testing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.