In recent decades, substantial changes have occurred in the spatial structure and form of landscapes in metropolises; these have greatly impacted ecosystem provision capacities. Clarifying the impact mechanism of landscape patterns on ecosystem services can provide insights into regional ecological conservation and sustainable development measures. Although previous studies have explored the impacts of landscape patterns on ecosystem services at multiple scales, few studies have been conducted using the buffer gradient analysis approach. Using land-use/cover change data, this study measured the evolution of spatiotemporal features of landscape patterns and ecosystem services value (ESV) with 1, 2, and 3 km buffer-zone scales in Wuhan, China. Econometric models were then used to analyze the impacts of landscape patterns on ecosystem services at different buffer-zone scales. The results demonstrated that rapid urbanization in Wuhan has led to significant changes in landscape patterns, and the landscape pattern metrics exhibited significant spatial heterogeneity. The ESV in Wuhan exhibited a steady decline during the study period. Hydrological regulations and waste treatment functions contributed to the largest proportion of ESV, and raw material production functions contributed to the lowest proportion. Landscape pattern metrics exerted a significant influence on ESV; however, this influence varied greatly. The results of this study provide a new understanding of the influence mechanism of landscape patterns on ecosystem services at 1, 2, and 3 km buffer-zone scales. These findings are critical for facilitating landscape planning and regional sustainable development.
Territorial space is a multi-functional complex. The coordinated production-living-ecological space (PLES) effectively coordinates the man-land relationship, promotes regional sustainable development, and maximizes territorial space. How to build a high-quality national spatial layout and support system for development has become a hot topic of concern in all sectors of society. However, few studies have explored the coupling coordination considering the various production-living-ecological functions of land use type and its influencing factors of PLES at the county scale in China. To address the gap, based on the connotation of PLES theory, this study established a classification and evaluation system for PLES and analyzed the spatio-temporal characteristics, coupling coordination degree, spatial autocorrelation, and influencing factors of PLES in China from 2000 to 2020. The results are as follows: (1) The production space index and living space index in China showed a continuous increase tendency, while the ecological space index decreased continuously during the study period. The production space and living space were concentrated in the east of Hu Line, and the ecological space indexes in mountainous areas were significantly higher than those in plain areas during the study period. (2) The gravity centers of PLES all migrated to the west of China to different degrees during the study period. (3) From 2000 to 2020, the basically balanced category was the main coupling coordination type, and the number of seriously unbalanced categories accounted for the least. In the west of the Hu Line, the seriously unbalanced category was dominant, while in the east of the Hu Line were the moderately unbalanced categories and above. (4) During the study period, the low-low type was the main relationship type, widely distributed in western China, followed by the high-high type, mainly situated in the North China Plain, Yangtze River Delta, Pearl River Delta, Jianghan Plain, Chengdu Plain, Northeast China Plain, and some provincial capital cities. (5) Regression results showed that natural factors were the main reason restricting the coordinated development of PLES, and socioeconomic factors could effectively promote the coordinated development of PLES. Landscape pattern also significantly influenced the coordinated development of PLES, but varied greatly. The findings of this study can provide a scientific reference for the optimization of territorial space layout and the promotion of high-quality development of territorial space.
The booming population and accelerating urbanization in the Huaihe River Basin have sped up the land use transformation and the cultivated land fragmentation (CLF), seriously impeded the advancement of agricultural modernization, and threatened regional stability and national food security as well. The analysis of CLF degree and its spatiotemporal distribution characteristics, along with the influencing factors in the Huaihe River Basin, is of great significance for promoting the intensive and efficient utilization of cultivated land resources and maintaining food security. Previous studies lack the measurement and cause analysis of CLF in Huaihe River Basin. To bridge the gap, this study introduces Fragstats4.2 and ArcGIS10.3 to analyze the spatiotemporal characteristics of CLF in county units in the Huaihe River Basin from 2000 to 2018 through the Lorentz curve, entropy method, and spatial auto-correlation method while the causes of the spatiotemporal differentiation of CLF in the basin were explored with the help of a geographic detector. The results show that the spatial distribution of cultivated land in the Huaihe River Basin is relatively balanced, and the Gini coefficients of cultivated land from 2000 to 2018 were 0.105, 0.108, and 0.113, respectively. More than 56% of the counties in the basin have a location entropy greater than 1. the percentage of landscape, area-weighted mean patch area, patch cohesion index, and aggregation index decrease year by year while the patch density and splitting index show an upward trend. The landscape pattern of cultivated land is highly complex, and the overall fragmentation degree is increasing. The county distribution pattern of the CLF degree with random and agglomeration is generally stable. The spatiotemporal differentiation of CLF in the Huaihe River Basin is affected by multiple factors, among which the influences of the normalized difference vegetation index, per capita cultivated land area, and intensity of human activity obviously stronger than other factors, and the contribution rate of the factors reached more than 0.4. The interaction effect among the factors is stronger than that of single factor, with dual-factor enhancement and nonlinear enhancement dominating. The results of this study have important implications for optimizing the agricultural structure in the Huaihe River Basin and alleviating the CLF in important grain production areas.
The spatial relationships between traffic accessibility and supply and demand (S&D) of ecosystem services (ESs) are essential for the formulation of ecological compensation policies and ESs regulation. In this study, an ESs matrix and coupling analysis method were used to assess ESs S&D based on land-use data for 2000, 2010, and 2020, and spatial regression models were used to analyze the correlated impacts of traffic accessibility. The results showed that the ESs supply and balance index in the middle reaches of the Yangtze River urban agglomeration (MRYRUA) continuously decreased, while the demand index increased from 2000 to 2020. The Gini coefficients of these indices continued to increase but did not exceed the warning value (0.4). The coupling degree of ESs S&D continued to increase, and its spatial distribution patterns were similar to that of the ESs demand index, with significantly higher values in the plains than in the montane areas, contrasting with those of the ESs supply index. The results of global bivariate Moran's I analysis showed a significant spatial dependence between traffic accessibility and the degree of coupling between ESs S&D; the spatial regression results showed that an increase in traffic accessibility promoted the coupling degree. The present results provide a new perspective on the relationship between traffic accessibility and the coupling degree of ESs S&D, representing a case study for similar future research in other regions, and a reference for policy creation based on the matching between ESs S&D in the MRYRUA.
The main function zone (MFZ) is the major strategy of China’s economic development and ecological environment protection. Clarifying the logical relationship between “MFZ strategy” and “territorial spatial layout” is vital to construct regional economic layout and territorial spatial supporting system of high-quality development. However, few studies have revealed the evolution process and formation mechanism of the production-living-ecological space (PLES) structure of China’s MFZ over a long period of time. To bridge the gap, based on the land use dataset in China from 1980 to 2020, this study analyzed the evolution patterns of PLES in China’s MFZs using multiple methods and measured the formation mechanism of PLES in different types of MFZs with the GeoDetector model. Results showed that the spatial structure of China’s national territory has evolved drastically in the past 40 years, showing significant horizontal regional differentiation and vertical gradient differentiation. Ecological space has been continuously decreasing, while production space and living space have been continuously increasing, and the evolution of PLES varied significantly in different MFZs. During the study period, the gravity center of PLES in China all moved westward. The spatial distribution pattern of production space and living space was from northeast to southwest, and the ecological space was from east to west. The evolution of China’s territorial spatial structure was subject to the combined effects of natural and socio-economic factors, exhibiting significant differences in different MFZs. Land use intensity had the most prominent influence on the formation of PLES, followed by elevation. The influences of different factors on PLES structure were strengthened mainly through two types of nonlinear enhancement and dual-factor enhancement. This study can provide scientific support for the optimal management and high-quality development of territorial space in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.