Single‐crystalline cathode materials have attracted intensive interest in offering greater capacity retention than their polycrystalline counterparts by reducing material surfaces and phase boundaries. However, the single‐crystalline LiCoO2 suffers severe structural instability and capacity fading when charged to high voltages (4.6 V) due to Co element dissolution and O loss, crack formation, and subsequent electrolyte penetration. Herein, by forming a robust cathode electrolyte interphase (CEI) in an all‐fluorinated electrolyte, reversible planar gliding along the (003) plane in a single‐crystalline LiCoO2 cathode is protected due to the prevention of element dissolution and electrolyte penetration. The robust CEI effectively controls the performance fading issue of the single‐crystalline cathode at a high operating voltage of 4.6 V, providing new insights for improved electrolyte design of high‐energy‐density battery cathode materials.
Owing to the unique electronic properties, rare‐earth modulations in noble‐metal electrocatalysts emerge as a critical strategy for a broad range of renewable energy solutions such as water‐splitting and metal–air batteries. Beyond the typical doping strategy that suffers from synthesis difficulties and concentration limitations, the innovative introduction of rare‐earth is highly desired. Herein, a novel synthesis strategy is presented by introducing CeO2 support for the nickel–iron–chromium hydroxide (NFC) to boost the oxygen evolution reaction (OER) performance, which achieves an ultralow overpotential at 10 mA cm−2 of 230.8 mV, the Tafel slope of 32.7 mV dec−1, as well as the excellent durability in alkaline solution. Density functional theory calculations prove the established d–f electronic ladders, by the interaction between NFC and CeO2, evidently boosts the high‐speed electron transfer. Meanwhile, the stable valence state in CeO2 preserves the high electronic reactivity for OER. This work demonstrates a promising approach in fabricating a nonprecious OER electrocatalyst with the facilitation of rare‐earth oxides to reach both excellent activity and high stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.