Ban-Xia-Xie-Xin-Tang (BXXXT) is a classical formula from Shang-Han-Lun which is one of the earliest books of TCM clinical practice. In this work, we investigated the therapeutic mechanisms of BXXXT for the treatment of multiple diseases using a network pharmacology approach. Here three BXXXT representative diseases (colitis, diabetes mellitus, and gastric cancer) were discussed, and we focus on in silico methods that integrate drug-likeness screening, target prioritizing, and multilayer network extending. A total of 140 core targets and 72 representative compounds were finally identified to elucidate the pharmacology of BXXXT formula. After constructing multilayer networks, a good overlap between BXXXT nodes and disease nodes was observed at each level, and the network-based proximity analysis shows that the relevance between the formula targets and disease genes was significant according to the shortest path distance (SPD) and a random walk with restart (RWR) based scores for each disease. We found that there were 22 key pathways significantly associated with BXXXT, and the therapeutic effects of BXXXT were likely addressed by regulating a combination of targets in a modular pattern. Furthermore, the synergistic effects among BXXXT herbs were highlighted by elucidating the molecular mechanisms of individual herbs, and the traditional theory of “Jun-Chen-Zuo-Shi” of TCM formula was effectively interpreted from a network perspective. The proposed approach provides an effective strategy to uncover the mechanisms of action and combinatorial rules of BXXXT formula in a holistic manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.