Advances in transition state theory and computer simulations are providing new insights into the sources of enzyme catalysis. Both lowering of the activation free energy and changes in the generalized transmission coefficient (recrossing of the transition state, tunneling, and nonequilibrium contributions) can play a role. A framework for understanding these effects is presented, and the contributions of the different factors, as illustrated by specific enzymes, are identified and quantified by computer simulations. The resulting understanding of enzyme catalysis is used to comment on alternative proposals of how enzymes work.
This review discusses methods for the incorporation of quantum mechanical effects into enzyme kinetics simulations in which the enzyme is an explicit part of the model. We emphasize three aspects: (a) use of quantum mechanical electronic structure methods such as molecular orbital theory and density functional theory, usually in conjunction with molecular mechanics; (b) treating vibrational motions quantum mechanically, either in an instantaneous harmonic approximation, or by path integrals, or by a three-dimensional wave function coupled to classical nuclear motion; (c) incorporation of multidimensional tunneling approximations into reaction rate calculations.
A Monte Carlo quantum mechanical-molecular mechanical (QM-MM) simulation method was used to determine the contributions of the solvent polarization effect to the total interaction energies between solute and solvent for amino acid side chains and nucleotide bases in aqueous solution. In the present AM1-TIP3P approach, the solute molecule is characterized by valence electrons and nucleus cores with Hartree-Fock theory incorporating explicit solvent effects into the total Hamiltonian, while the solvent is approximated by the three-point charge TIP3P model. The polarization energy contributes 10 to 20 percent of the total electrostatic energy in these systems. The performance of the hybrid AM1-TIP3P model was further validated by consideration of bimolecular complexes with water and by computation of the free energies of solvation of organic molecules using statistical perturbation theory. Excellent agreement with ab initio 6-31G(d) results and experimental solvation free energies was obtained.
A generalized hybrid orbital (GHO) method has been
developed at the semiempirical level in combined
quantum mechanical and molecular mechanical (QM/MM) calculations.
In this method, a set of hybrid orbitals
is placed on the boundary atom between the QM and MM fragments, and one
of the hybrid orbitals participates
in the SCF calculation for the atoms in the QM region. The GHO
method provides a well-defined potential
energy surface for a hybrid QM/MM system and is a significant
improvement over the “link-atom” approach
by saturating the QM valencies with hydrogen atoms. The method has
been tested on small molecules and
yields reasonable structural, energetic, and electronic results in
comparison with the results of the corresponding
QM and MM approximations. The GHO method will greatly increase the
applicability of combined QM/MM methods to systems comprising large molecules, such as
proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.