A Stone-Wales (SW) defect is the simplest topological defect in graphene-like materials and can be potentially employed to design electronic devices . In this paper, we have systematically investigated the formation, structural, and electronic properties of the neutral and charged SW defects in hexagonal boron nitride (BN) using first-principles calculations. The transition states and energy barrier for the formation of SW defects demonstrate that the defected BN is stable. Our calculations show that there are two in-gap defect levels, which originate from the asymmetrical pentagon-heptagon pairs. The local defect configurations and electronic properties are sensitive to their charge states induced by the defect levels. The electronic band structures show that the negative and positive charged defects are mainly determined by shifting the conduction band minimum (CBM) and valence band maximum (VBM) respectively, and the SW-defected BN can realize -1 and +1 spin-polarized charge states. The effects of carbon (C) substitution on neutral and charged SW-defected BN have also been studied. Our results indicate that the C substitution of B in BN is in favour of the formation of SW defects. Structural and electronic calculations show rich charge-dependent properties of C substitutions in SW-defected BN, thus our theoretical study is important for various applications in the design of BN nanostructure-based devices.
Monolayer (ML) tungsten ditelluride (WTe) is a well-known quantum spin Hall (QSH) insulator with topologically protected gapless edge states, thus promising dissipationless electronic devices. However, experimental findings exhibit the fast oxidation of ML WTe in ambient conditions. To reveal the changes of topological properties of WTe arising from oxidation, we systematically study the surface oxidation reaction of ML 1T'-WTe using first-principles calculations. The calculated results indicate that the fast oxidation of WTe originates from the existence of HO in air, which significantly promotes the oxidation of ML 1T'-WTe. More importantly, this low-coverage oxidized WTe loses its topological features and is changed into a trivial insulator. Furthermore, we propose a fully oxidized ML WTe that can still possess the QSH insulator states. The topological phase transition induced by oxidation provides exotic insight into understanding the topological features of layered transition-metal dichalcogenide materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.