Context: Organic anion-transporting polypeptide 2B1 (OATP2B1) which is highly expressed in enterocytes and hepatocytes could be a key determinant for the intestinal absorption and hepatic uptake of its substrate drugs. Natural products are commonly used in traditional Chinese medicine, foods, and beverages. Objective: The objective of this study is to determine the OATP2B1-mediated drug interactions that could occur between natural products and OATP2B1 substrate drugs. Materials and methods: Human OATP2B1 was transiently expressed in human embryonic kidney (HEK293) cells and characterized by immunofluorescence, Western blot, and uptake assay. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods for detecting OATP2B1 substrates estrone-3-sulfate (E3S) and three statins had been developed and were employed to investigate the effects of 27 frequently used natural products on the function of OATP2B1. Uptake of 5 lM E3S and 1 lM statins in the absence or presence of natural products was measured at 37 C for 2 min with empty vector-and OATP2B1-transfected HEK293 cells. The IC 50 values of inhibitors for OATP2B1-mediated 5 lM E3S uptake were determined. Results: Our results showed that mulberrin, scutellarin, quercetin, and glycyrrhetinic acid were strong inhibitors of OATP2B1-mediate E3S uptake with IC 50 values being 1.8, 2.0, 7.5, and 13.0 lM, which were comparable with their plasma concentrations in clinical trials. They also inhibited OATP-mediated uptake of atorvastatin, fluvastatin, and rosuvastatin. These results indicated that clinically relevant drug interactions could occur between these natural compounds and OATP2B1 substrate drugs. Discussion and conclusion: The information obtained from this study might be helpful to predict and to avoid potential OATP2B1-mediated drug interactions.
Organic anion transporting polypeptide 2B1 (OATP2B1), which is highly expressed in enterocytes and hepatocytes could be a key determinant for the intestinal absorption and hepatic uptake of its substrates, most of which are amphipathic organic anions. Tryptophan residues may possess a multitude of functions for a transport protein through aromatic interactions, such as maintaining the proper protein structure, guiding the depth of membrane insertion, or interacting directly with substrates. There are totally six tryptophan residues in OATP2B1. However, little is known about their role in the function and expression of OATP2B1. Our results show that, while W272, W276, and W277 located at the border of extracellular loop 3 and transmembrane domain 6 exhibit a moderate effect on the surface expression of OATP2B1, W611 located at the middle of transmembrane domain 11 plays a critical role in the function of OATP2B1. The tryptophan-to-alanine mutation of W611 changes the kinetic characteristics of OATP2B1-mediated estrone-3-sulfate (E3S) transport radically, from a monophasic saturation curve (with K and V values being of 7.1 ± 1.1 μM and 182 ± 7 pmol/normalized mg/min, respectively) to a linear curve. Replacing alanine with a phenylalanine will rescue most of OATP2B1's function, suggesting that the aromatic side chain of residue 611 is very important. However, hydrogen-bond forming and positively charged groups at this position are not favorable. The important role of W611 is not substrate-dependent. Molecular modeling indicates that the side chain of W611 faces toward the substrate translocation pathway and might interact with substrates directly. Taken together, our findings reveal that W611 is critical for the function of OATP2B1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.