Sidt2 was identified as a novel integral lysosomal membrane protein recently. We generated global Sidt2 knockout mice by gene targeting. These mice have a comparatively higher random and fasting glucose concentration. Intraperitoneal and oral glucose tolerance tests in Sidt2 knockout mice indicated glucose intolerance and decreased serum insulin level. Notably, the Sidt2−/− mice had hypertrophic islets compared with control mice. By Western blot and immunofluorescence, Sidt2−/− mouse islets were shown to have increased insulin protein, which actually contained more insulin secretory granules than their controls, demonstrated by electromicroscopy. Consistent with the in vivo study, isolated islet culture from the Sidt2−/− mice produced less insulin when stimulated by a high concentration of glucose or a depolarizing concentration of KCl. Under electromicroscope less empty vesicles and more mature ones in Sidt2−/− mice islets were observed, supporting impaired insulin secretory granule release. In conclusion, Sidt2 may play a critical role in the regulation of mouse insulin secretory granule secretion.
Compared to TURP, HoLEP was safer and had better long-term efficacy as assessed by multiple quantitative measures. Therefore, HoLEP may present a better option in the treatment of BPH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.