Signals from CD4+ T cells induce two opposite fates in B cells: clonal proliferation of B cells that bind specifically to foreign antigens and clonal deletion of equivalent B cells that bind self-antigens. This B cell fate decision is determined by the concerted action of two surface proteins on activated T cells, CD40-and Fas-ligands (CD40L and FasL), whose effects are switched by signals from the B cell antigen receptor (BCR). Foreign antigens that stimulate the BCR acutely cause CD40L and FasL to promote clonal proliferation. CD40L and FasL trigger deletion, however, when the BCRs become desensitized by chronic stimulation with self-antigens or when BCRs have not bound an antigen. The need for both Fas and CD40L to correctly regulate self-reactive B cell fate may explain the severe autoantibody disorders in Fas- or CD40L-deficient children.
Despite the recent surge of interest in inorganic lead halide perovskite nanocrystals, there are still significant gaps in their stability disturbance and the understanding of their destabilization, assembly, and growth processes. Here, we discover that polar solvent molecules can induce the lattice distortion of ligand-stabilized cubic CsPbI, leading to the phase transition into orthorhombic phase, which is unfavorable for photovoltaic applications. Such lattice distortion triggers the dipole moment on CsPbI nanocubes, which subsequently initiates the hierarchical self-assembly of CsPbI nanocubes into single-crystalline nanowires. The systematic investigations and in situ monitoring on the kinetics of the self-assembly process disclose that the more amount or the stronger polarity of solvent can induce the more rapid self-assembly and phase transition. These results not only elucidate the destabilization mechanism of cubic CsPbI nanocrystals, but also open up opportunities to synthesize and store cubic CsPbI for their practical applications in photovoltaics and optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.