Objective: Accurate staging is of great importance in treatment selection for patients with nasopharyngeal carcinoma (NPC). The aims of this study were to construct radiomic models of NPC staging based on positron emission tomography (PET) and magnetic resonance (MR) images and to investigate the correlation between metabolic parameters and radiomic features. Methods: A total of 100 consecutive cases of NPC (70 in training and 30 in the testing cohort) with undifferentiated carcinoma confirmed pathologically were recruited. Metabolic parameters of the local lesions of NPC were measured. A total of 396 radiomic features based on PET and MRI images were calculated [including histogram, Haralick, shape factor, gray level co-occurrence matrix (GLCM), and run length matrix (RLM)] and selected [using maximum relevance and minimum redundancy (mRMR) and least shrinkage and selection operator (LASSO)], respectively. The logistic regression models were established according to these features. Finally, the relationship between the metabolic parameters and radiomic features was analyzed. Results: We selected the nine most relevant radiomic features (six from MR images and three from PET images) from local NPC lesions. In the PET model, the area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, and the specificity of the training group were 0.84, 0.75, 0.90, and 0.69, respectively. In the MR model, those metrics were 0.85, 0.83, 0.75, and 0.86, respectively. Pearson's correlation analysis showed that the metabolic parameters had different degrees of correlation with the selected radiomic features. Conclusion: The PET and MR radiomic models were helpful in the diagnosis of NPC staging. There were correlations between the metabolic parameters and radiomic features of primary NPC based on PET/MR. In the future, PET/MR-based radiomic Feng et al. NPC Radiomics Based on PET/MR Imaging models, with further improvement and validation, can be a more useful and economical tool for predicting local invasion and distant metastasis of NPC.
Background: As a potential brain imaging biomarker, amplitude of low frequency fluc-tuation (ALFF) has been used as a feature to distinguish patients with Alzheimer’s disease (AD) and amnestic mild cognitive impairment (aMCI) from normal controls (NC). However, it remains unclear whether the frequency-dependent pattern of ALFF alterations can effectively distinguish the different phases of the disease. Methods: In the present study, 52 AD and 50 aMCI patients were enrolled together with 43 NC in total. The ALFF values were calculated in the following three frequency bands: classical (0.01-0.08 Hz), slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz) for the three different groups. Subsequently, the local functional abnormalities were employed as features to examine the effect of classification among AD, aMCI and NC using a support vector machine (SVM). Results: We found that the among-group differences of ALFF in the different frequency bands were mainly located in the left hippocampus (HP), right HP, bilateral posterior cingulate cortex (PCC) and bilateral precuneus (PCu), left angular gyrus (AG) and left medial prefrontal cortex (mPFC). When the local functional abnormalities were employed as features, we identified that the ALFF in the slow-5 frequency band showed the highest accuracy to distinguish among the three groups. Conclusion: These findings may deepen our understanding of the pathogenesis of AD and suggest that slow-5 frequency band may be helpful to explore the pathogenesis and distinguish the phases of this disease.
In the present study, the effects of Mg-Nd-Zn-Zr (JDBM), brushite (CaHPO4·2H2O)-coated JDBM (C-JDBM), AZ31, WE43, pure magnesium (Mg) and Ti alloy (TC4) on rabbit chondrocytes were investigated in vitro. Adhesion experiments revealed the satisfactory morphology of chondrocytes on the surface of all samples. An indirect cytotoxicity test using MTT assay revealed that C-JDBM and TC4 exhibited results similar to those of the negative control, better than those obtained with JDBM, AZ31, WE43 and pure Mg (p<0.05). There were no statistically significant differences observed between the JDBM, AZ31, WE43 and pure Mg group (p>0.05). The results of indirect cell cytotoxicity and proliferation assays, as well as those of apoptosis assay, glycosaminoglycan (GAG) quantification, assessment of collagen II (Col II) levels and RT-qPCR revealed a similar a trend as was observed with MTT assay. These findings suggested that the JDBM alloy was highly biocompatible with chondrocytes in vitro, yielding results similar to those of AZ31, WE43 and pure Mg. Furthermore, CaHPO4·2H2O coating significantly improved the biocompatibility of this alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.