Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we make a conclusion of the survey and list future research directions.
Hypertext documents, such as web pages and academic papers, are of great importance in delivering information in our daily life. Although being effective on plain documents, conventional text embedding methods suffer from information loss if directly adapted to hyper-documents. In this paper, we propose a general embedding approach for hyper-documents, namely, hyperdoc2vec, along with four criteria characterizing necessary information that hyper-document embedding models should preserve. Systematic comparisons are conducted between hyperdoc2vec and several competitors on two tasks, i.e., paper classification and citation recommendation, in the academic paper domain. Analyses and experiments both validate the superiority of hyperdoc2vec to other models w.r.t. the four criteria.
Knowledge graph embedding aims at modeling entities and relations with low-dimensional vectors. Most previous methods require that all entities should be seen during training, which is unpractical for real-world knowledge graphs with new entities emerging on a daily basis. Recent efforts on this issue suggest training a neighborhood aggregator in conjunction with the conventional entity and relation embeddings, which may help embed new entities inductively via their existing neighbors. However, their neighborhood aggregators neglect the unordered and unequal natures of an entity's neighbors. To this end, we summarize the desired properties that may lead to effective neighborhood aggregators. We also introduce a novel aggregator, namely, Logic Attention Network (LAN), which addresses the properties by aggregating neighbors with both rules-and network-based attention weights. By comparing with conventional aggregators on two knowledge graph completion tasks, we experimentally validate LAN's superiority in terms of the desired properties.
Chinese spelling check (CSC) is a challenging yet meaningful task, which not only serves as a preprocessing in many natural language processing (NLP) applications, but also facilitates reading and understanding of running texts in peoples' daily lives. However, to utilize datadriven approaches for CSC, there is one major limitation that annotated corpora are not enough in applying algorithms and building models. In this paper, we propose a novel approach of constructing CSC corpus with automatically generated spelling errors, which are either visually or phonologically resembled characters, corresponding to the OCRand ASR-based methods, respectively. Upon the constructed corpus, different models are trained and evaluated for CSC with respect to three standard test sets. Experimental results demonstrate the effectiveness of the corpus, therefore confirm the validity of our approach. * This work was conducted during Dingmin Wang's internship in Tencent AI Lab. Sentence Correction 我们应该认真对待这些 己 (ji2) 经发生的事 已 (yi3) 在我们班上, 她 (ta1)是一个很聪明的男孩 他 (ta1)
In this paper, we propose RNN-Capsule, a capsule model based on Recurrent Neural Network (RNN) for sentiment analysis. For a given problem, one capsule is built for each sentiment category e.g., 'positive' and 'negative'. Each capsule has an attribute, a state, and three modules: representation module, probability module, and reconstruction module. The attribute of a capsule is the assigned sentiment category. Given an instance encoded in hidden vectors by a typical RNN, the representation module builds capsule representation by the attention mechanism. Based on capsule representation, the probability module computes the capsule's state probability. A capsule's state is active if its state probability is the largest among all capsules for the given instance, and inactive otherwise. On two benchmark datasets (i.e., Movie Review and Stanford Sentiment Treebank) and one proprietary dataset (i.e., Hospital Feedback), we show that RNN-Capsule achieves state-of-the-art performance on sentiment classification. More importantly, without using any linguistic knowledge, RNN-Capsule is capable of outputting words with sentiment tendencies reflecting capsules' attributes. The words well reflect the domain specificity of the dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.