In response to danger signals, macrophages rapidly produce many inflammatory cytokines that trigger the cascade release of inflammatory mediators, leading to tissue damage, which is an important cause of clinical manifestations of syphilis at all stages. However, we still know very little about the specific mechanism of this process. Tp0768 is an infection-stage-dependent antigen that plays an important role in the infection of Treponema pallidum. In this study, we demonstrated that Tp0768 stimulation of macrophages can cause IL-1β, IL-6, and IL-8 mRNA expression levels to increase in a dose-and time-dependent manner. Further research showed that Tp0768 activated ER stress and the ROS/NF-κB pathway in macrophages. Inhibition of ER stress and the ROS/NF-κB pathway inhibited the expression of IL-1β, IL-6, and IL-8 induced by Tp0768. In addition, pretreatment with a PERK pathway inhibitor significantly reduced the expression of the NF-κB and JNK pathways, while also downregulating the expression of IL-1β, IL-6, and IL-8. Tp0768 stimulation can activate IRE1α/XBP-1 signaling and participate in the induction of inflammatory cytokines through the JNK pathway. These findings indicate that Tp0768 promotes the secretion of proinflammatory cytokines IL-1β, IL-6, and IL-8 by macrophages through ER stress and the ROS/NF-κB pathway, which are also involved in the activation of the NF-κB and JNK pathways that are induced by the PERK pathway and activation of IRE1α/XBP-1 signaling. Key points • This study found for the first time that the recombinant Treponema pallidum protein Tp0768 promotes the production of IL-1β, IL-6, and IL-8 by macrophages through ER stress. • Recombinant Treponema pallidum protein Tp0768 regulates the ROS/NF-κB pathway through ER stress. • ER stress-related pathway PERK induces the expression of IL-1β, IL-6, and IL-8 by activating the NF-κB pathway and the JNK pathway. • IRE1α can induce the splicing of XBP-1mRNA and activate the JNK pathway.
We noticed that syphilis patients seem to be more susceptible to diabetes and the lesions often involve the kidneys, but the pathogenesis is not yet completely understood. In this study, microarray analysis was performed to investigate the dysregulated expressed genes (DEGs) in rabbit model of syphilis combined with diabetes. A total of 1045 genes were identified to be significantly differentially expressed, among which 571 were up-regulated and 474 were down-regulated (≥ 2.0fold, p < 0.05). Using the database visualization and integration discovery for the Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis. The downregulated DEGs were significantly enriched for biosynthesis of antibiotics, carbon metabolism and protein digestion, while the upregulated DEGs were mainly enriched for cancer and PI3K-Akt signaling pathway. Molecular Complex Detection (MCODE) plugins were used to visualize protein–protein interaction (PPI) network of DEGs and Screening for hub genes and gene modules. ALB, FN1, CASP3, MMP9, IL8, CTGF, STAT3, IGF1, VCAM-1 and HGF were filtrated as the hub genes according to the degree of connectivity from the PPI network. To the best of our knowledge, this study is the first to comprehensively identify the expression patterns of dysregulated genes in syphilis combined with diabetes, providing a basis for revealing the underlying pathogenesis of syphilis combined with diabetes and exploring the goals of therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.