Self-assembling natural drug hydrogels formed without structural modification and able to act as carriers are of interest for biomedical applications. A lack of knowledge about natural drug gels limits there current application. Here, we report on rhein, a herbal natural product, which is directly self-assembled into hydrogels through noncovalent interactions. This hydrogel shows excellent stability, sustained release and reversible stimuli-responses. The hydrogel consists of a three-dimensional nanofiber network that prevents premature degradation. Moreover, it easily enters cells and binds to toll-like receptor 4. This enables rhein hydrogels to significantly dephosphorylate IκBα, inhibiting the nuclear translocation of p65 at the NFκB signalling pathway in lipopolysaccharide-induced BV2 microglia. Subsequently, rhein hydrogels alleviate neuroinflammation with a long-lasting effect and little cytotoxicity compared to the equivalent free-drug in vitro. This study highlights a direct self-assembly hydrogel from natural small molecule as a promising neuroinflammatory therapy.
Our previous study demonstrated that the methyl-CpG-binding domain protein 2 (MBD2) mediates vancomycin (VAN)-induced acute kidney injury (AKI). However, the role and regulation of MBD2 in septic AKI are unknown. Herein, MBD2 was induced by lipopolysaccharide (LPS) in Boston University mouse proximal tubules (BUMPTs) and mice. For both in vitro and in vivo experiments, we showed that inhibition of MBD2 by MBD2 small interfering RNA (siRNA) and MBD2-knockout (KO) substantially improved the survival rate and attenuated both LPS and cecal ligation and puncture (CLP)-induced AKI, renal cell apoptosis, and inflammatory factor production. Global genetic expression analyses and in vitro experiments suggest that the expression of protein kinase C eta (PKCη), caused by LPS, is markedly suppressed in MBD2-KO mice and MBD2 siRNA, respectively. Mechanistically, chromatin immunoprecipitation (ChIP) analysis indicates that MBD2 directly binds to promoter region CpG islands of PKCη via suppression of promoter methylation. Furthermore, PKCη siRNA improves the survival rate and attenuates LPS-induced BUMPT cell apoptosis and inflammatory factor production via inactivation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)1/2, which were further verified by PKCη siRNA treatment in CLP-induced AKI. Finally, MBD2-KO mice exhibited CLP-induced renal cell apoptosis and inflammatory factor production by inactivation of PKCη/p38MAPK and ERK1/2 signaling. Taken together, the data indicate that MBD2 mediates septic-induced AKI through the activation of PKCη/p38MAPK and the ERK1/2 axis. MBD2 represents a potential target for treatment of septic AKI.
N6-methyladenosine(m 6 A) is the most abundant post-transcriptional RNA modification in eukaryotes. However, little is known about its role in pancreatic adenocarcinoma (PAAD). The aim of our study was to identify gene signatures and prognostic values of m 6 A regulators in PAAD. Patients from 3 different datasets with complete genomic and transcriptomic sequencing data were enrolled. Survival analysis for different gene alterations was performed using log-rank tests and Cox regression model. The association between alteration of m 6 A regulators and clinicopathological characteristics was examined using chi-square test. Results showed a high frequency of copy number alterations (CNAs) of m 6 A regulatory genes in PAAD patients, but somatic mutations were rarely happened. CNAs and mutations of m 6 A regulatory genes was associated with patient’s gender, pathologic stage and resected tumor size. Patients with “gain of function” for m 6 A “reader” genes combined with copy number loss of “writers” or “erasers” had worse overall survival (OS) compared with other patterns. Moreover, copy number gain of m 6 A “reader” gene insulin growth factor 2 binding protein 2 ( IGF2BP2) was an independent risk factor for OS (HR = 2.392, 95%CI: 1.392-4.112, p<0.001) and disease-free survival (DFS) (HR = 2.400, 95%CI: 1.236-4.659, p=0.010). Gene Set Enrichment Analysis (GSEA) indicated that IGF2BP2 was correlated with multiple biological processes associated with cancer, of which the most significant processes were relevant to cancer cell cycle, cell immortalization and tumor immunity. To sum up, a significant relationship was found between m 6 A genomic alterations and worse clinical outcomes. These innovative findings are expected to guide further research on the mechanism of m 6 A in PAAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.